[1] C KULESA. Terahertz spectroscopy for astronomy: from comets to cosmology. IEEE Transactions on Terahertz Science and Technology, 232(2011).
[2] K CHRISTOPHER. Terahertz Astronomy, 261-282(2016).
[3] K SENGUPTA, T NAGATSUMA, D M MITTLEMAN. Terahertz integrated electronic and hybrid electronic-photonic systems. Nature Electronics, 622(2018).
[4] J L LIU, J M DAI, S L CHIN et al. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 627(2010).
[5] J B BAXTER, G W GUGLIETTA. Terahertz spectroscopy. Analytical Chemistry, 4342(2011).
[6] S J SUNG, S SELVIN, N BAJWA et al. THz imaging system for in vivo human cornea. IEEE Transactions on Terahertz Science and Technology, 27(2018).
[7] Z Y YAN, L G ZHU, K MENG et al. THz medical imaging: from in vitro to in vivo. Trends in Biotechnology, 816(2022).
[8] S P DANG, O AMIN, B SHIHADA et al. What should 6G be?. Nature Electronics, 20(2020).
[9] K RIKKINEN, P KYOSTI, M E LEINONEN et al. THz radio communication: link budget analysis toward 6G. IEEE Communications Magazine, 22(2020).
[10] D SERGHIOU, M KHALILY, T W C BROWN et al. Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: a survey, open challenges and future research directions. IEEE Communications Surveys and Tutorials, 1957(2022).
[11] A KUMAR, M GUPTA, P PITCHAPPA et al. Phototunable chip- scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nature Communications, 5404(2022).
[12] Y H YANG, Y YAMAGAMI, X B YU et al. Terahertz topological photonics for on-chip communication. Nature Photonics, 446(2020).
[13] F JASON, S LARRY, A J GASIEWSK. A near-millimeter wave interferometric radar. IEEE Radar Conference, Ottawa, 1-5(2013).
[14] B ZHANG, Y Y PI, J LI. Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results. IEEE Sensors Journal, 290(2015).
[15] M CARIS, S STANKO, S PALM et al. 300 GHz radar for high resolution SAR and ISAR applications, 577-580(2015).
[16] J C DICKINSON, M G THOMAS, J WALDMAN. High resolution imaging using 325 GHz and 1.5 THz transceivers, 373-380(2004).
[17] M HEMMAT, S AYARI, M MIČICA et al. Layer-controlled nonlinear terahertz valleytronics in two-dimensional semimetal and semiconductor PtSe2. InfoMat, e12468(2023).
[18] Z DONG, W YU, L ZHANG et al. Wafer-scale patterned growth of type-II Dirac semimetal platinum ditelluride for sensitive room- temperature terahertz photodetection. InfoMat, e12403(2023).
[19] B LIU, X ZHANG, J DU et al. Synergistic-engineered van der Waals photodiodes with high efficiency. InfoMat, e12282(2022).
[20] A IQBAL, P SAMBYAL, C M KOO. 2D MXenes for electromagnetic shielding: a review. Advanced Functional Materials, 2000883(2020).
[21] L LIU, A DAS, C M MEGARIDIS. Terahertz shielding of carbon nanomaterials and their composites—a review and applications. Carbon, 1(2014).
[22] R C CHE, L M PENG, X F DUAN et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Advanced Materials, 401(2004).
[23] H SUN, R C CHE, X YOU et al. Cross-stacking aligned carbon- nanotube films to tune microwave absorption frequencies and increase absorption intensities. Advanced Materials, 8120(2014).
[24] Q H LIU, Q CAO, H BI et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Advanced Materials, 486(2016).
[25] R C CHE, C Y ZHI, C Y LIANG et al. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Applied Physics Letters, 033105(2006).
[26] M SOKOL, V NATU, S KOTA et al. On the chemical diversity of the MAX phases. Trends in Chemistry, 210(2019).
[27] H M DING, Y B LI, M LI et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science, 1130(2023).
[28] Y WEI, P ZHANG, R A SOOMRO et al. Advances in the synthesis of 2D MXenes. Advanced Materials, e2103148(2021).
[29] A V MOHAMMADI, J ROSEN, Y GOGOTSI. The world of two-dimensional carbides and nitrides (MXenes). Science, eabf1581(2021).
[30] A IQBAL, F SHAHZAD, K HANTANASIRISAKUL et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science, 446(2020).
[31] S FAISAL, A MOHAMED, B CHRISTINE et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 1137(2016).
[32] Z C WU, H W CHENG, C JIN et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Advanced Materials, 2107538(2022).
[33] J LU, X LI, H Y HWANG et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves. Physical Review Letters, 207204(2017).
[34] C CASPERS, V P GANDHI, A MAGREZ et al. Sub-terahertz spectroscopy of magnetic resonance in BiFeO3 using a vector network analyzer. Applied Physics Letters, 241109(2016).
[35] A BITZER, H MERBOLD, A THOMAN et al. Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Optics Express, 3826(2009).
[36] T J YEN, W J PADILLA, N FANG et al. Terahertz magnetic response from artificial materials. Science, 1494(2004).
[37] C M WATTS, X L LIU, W J PADILLA. Metamaterial electromagnetic wave absorbers. Advanced Materials, 98(2012).
[38] K YOUJI. Electromagnetic wave absorbers detailed theories and applications. Hoboken: John Wiley & Sons, Inc, 5-20(2019).
[39] W W SALISBURY.
[40] H LI, F F LI, D G FAN et al. Wideband electromagnetic absorber based on array of parallel-plate waveguide, 1224-1226(2017).
[41] F COSTA, A MONORCHIO. A frequency selective radome with wideband absorbing properties. IEEE Transactions on Antennas and Propagation, 2740(2012).
[42] B JI, S W FAN, S J KOU et al. Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2Tx MXene/polymer films. Carbon, 130(2021).
[43] Y X ZUO, X R SU, X W LI et al. Multimaterial 3D-printing of graphene/LiZnFeO and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon, 62(2020).
[44] B T DEWITT, W D BURNSIDE. Electromagnetic scattering by pyramidal and wedge absorber. IEEE Transactions on Antennas and Propagation, 971(1988).
[45] R T JOHNK, A ONDREJKA, S TOFANI et al. Time-domain measurements of the electromagnetic backscatter of pyramidal absorbers and metallic plates. IEEE Transactions on Electromagnetic Compatibility, 429(1993).
[46] Z SHEN, S LI, Y XU et al. Three-dimensional printed ultrabroadband terahertz metamaterial absorbers. Physical Review Applied, 014066(2021).
[47] C Q WANG, W R SWEENEY, A D STONE et al. Coherent perfect absorption at an exceptional point. Science, 1261(2021).
[48] Y SLOBODKIN, G WEINBERG, H HORNER et al. Massively degenerate coherent perfect absorber for arbitrary wavefronts. Science, 995(2022).
[49] D G BARANOV, A KRASNOK, T SHEGAI et al. Coherent perfect absorbers: linear control of light with light. Nature Reviews Materials, 17064(2017).
[50] S C LI, J LUO, S ANWAR et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Physical Review B, 220301(2015).
[51] M PAPAIOANNOU, E PLUM, J VALENTE et al. Two-dimensional control of light with light on metasurfaces. Light-Science & Applications, e16070(2016).
[52] E E NARIMANOV, A V KILDISHEV. Optical black hole: broadband omnidirectional light absorber. Applied Physics Letters, 041106(2009).
[53] M H LEONARD, A S KEITH. Chichester: John Wiley & Sons Ltd(2002).
[54] C L WANG, C P CHIU, P J HUANG et al. High-performance 1-10 THz integrating sphere. Applied Optics, 3784(2021).
[55] Y WU, Y BAI. Radar cross section measurement in terahertz, 2991-2994(2016).
[56] K IWASZCZUK, H HEISELBERG, P U JEPSEN. Terahertz radar cross section measurements. Optics Express, 26399(2010).
[57] H J WAN, N LIU, J TANG et al. Substrate-independent Ti3C2Tx MXene waterborne paint for Terahertz absorption and shielding. ACS Nano, 13646(2021).
[58] Y I JHON, M SEO, Y M JHON. First-principles study of a MXene terahertz detector. Nanoscale, 69(2018).
[59] G CHOI, F SHAHZAD, Y M BAHK et al. Enhanced terahertz shielding of MXenes with nano-metamaterials. Advanced Optical Materials, 1701076(2018).
[60] G J LI, K KUSHNIR, Y C DONG et al. Equilibrium and non-equilibrium free carrier dynamics in 2D Ti3C2Tx MXenes: THz spectroscopy study, 035043(2018).
[61] G LUI, V NATU, T SHI et al. Two-dimensional MXenes Mo2Ti2C3Tz and Mo2TiC2Tz: microscopic conductivity and dynamics of photoexcited carriers. ACS Applied Energy Materials, 1530(2020).
[62] G J LI, N AMER, H A HAFEZ et al. Dynamical control over Terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses. Nano Letters, 636(2020).
[63] E COLIN-ULLOA, A FITZGERALD, K MONTAZERI et al. Ultrafast spectroscopy of plasmons and free carriers in 2D MXenes. Advanced Materials, e2208659(2023).
[64] W ZHENG, B SUN, D LI et al. Band transport by large Fröhlich polarons in MXenes. Nature Physics, 544(2022).
[65] T ZHAO, P Y XIE, H J WAN et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5-10 THz band. Nature Photonics, 622(2023).
[66] Y B LI, H SHAO, Z F LIN et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 894(2020).
[67] T S MATHIS, K MALESKI, A GOAD et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 6420(2021).
[68] Y J KIM, S J KIM, D SEO et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chemistry of Materials, 6346(2021).
[69] P P MICHALOWSKI, M ANAYEE, T S MATHIS et al. Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nature Nanotechnology, 1192(2022).
[70] O BALCI, E O POLAT, N KAKENOV et al. Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Communications, 6628(2015).
[71] P H Q PHAM, W D ZHANG, N V QUACH et al. Broadband impedance match to two-dimensional materials in the terahertz domain. Nature Communications, 2233(2017).
[72] J C E STEN, P K KOIVISTO. Optimum transparent absorbers of electromagnetic waves. IEEE Transactions on Electromagnetic Compatibility, 1011(2008).
[73] J M THOMASSIN, C JEROME, T PARDOEN et al. Polymer/ carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science & Engineering R-Reports, 2112(2013).
[74] F M OLIVEIRA, J AZADMANJIRI, X H WANG et al. Structure design and processing strategies of MXene-based materials for electromagnetic interference shielding. Small Methods, 2300112(2023).
[75] S J WAN, X LI, Y CHEN et al. High-strength scalable MXene films through bridging-induced densification. Science, 96(2021).
[76] N LIU, Q Q LI, H J WAN et al. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nature Communications, 5551(2022).
[77] T D FENG, Y W HU, X CHANG et al. Highly flexible Ti3C2Tx MXene/waterborne polyurethane membranes for high-efficiency terahertz modulation with low insertion loss. ACS Applied Materials & Interfaces, 7592(2023).
[78] Q ZOU, W Y GUO, L ZHANG et al. MXene-based ultra-thin film for terahertz radiation shielding. Nanotechnology, 505710(2020).
[79] Z A L KLAUDIA, S AGNIESZKA, M AGNIESZKA et al. Terahertz time domain spectroscopy of graphene and MXene polymer composites. Journal of Applied Polymer Science, 49962(2020).
[80] Q ZOU, C F SHI, B LIU et al. Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti3C2Tx MXene fiber membranes. Nanotechnology, 415204(2021).
[81] K HUSSAIN, S MEHBOOB, I AHMAD et al. Terahertz time- domain spectroscopy of thin and flexible CNT-modified MXene/ polymer composites. Applied Physics A, 382(2021).
[82] Z CHENG, Y CAO, R WANG et al. Multifunctional MXene-based composite films with simultaneous terahertz/gigahertz wave shielding performance for future 6G communication. Journal of Materials Chemistry A, 5593(2023).
[83] W L MA, H H CHEN, S Y HOU et al. Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth property in the terahertz band. ACS Applied Materials & Interfaces, 25369(2019).
[84] Z H LIN, J LIU, W PENG et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano, 2109(2020).
[85] W C SHUI, J M LI, H WANG et al. Ti3C2Tx MXene sponge composite as broadband terahertz absorber. Advanced Optical Materials, 2001120(2020).
[86] Y Y ZHU, J LIU, T GUO et al. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption- dominated electromagnetic-interference shielding. ACS Nano, 1465(2021).
[87] M LUO, J C GUO, W C SHUI et al. Ti3C2Tx MXene-based superhydrophobic broadband terahertz absorber with large pore-size foam architecture. Advanced Materials Interfaces, 2201767(2022).
[88] S J LI, S J XU, K C PAN et al. Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/ rGO composite film. Carbon, 127(2022).
[89] Y FEI, X Y WANG, F WANG et al. Covalent coupling induced-polarization relaxation in MXene-based terahertz absorber for realizing dual band absorption. Chemical Engineering Journal, 142049(2023).
[90] L WANG, Z MA, Y ZHANG et al. Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat, 413(2021).
[91] M HORODYNSKI, M KUHMAYER, C FERISE et al. Anti- reflection structure for perfect transmission through complex media. Nature, 281(2022).
[92] T YUN, G S LEE, J CHOI et al. Multidimensional Ti3C2Tx MXene architectures via interfacial electrochemical self-assembly. ACS Nano, 10058(2021).
[93] T T XUE, Y YANG, D Y YU et al. 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Letters, 45(2023).