[1] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 4248(2011).
[2] A V MOHAMMADI, J ROSEN, Y GOGOTSI. The world of two-dimensional carbides and nitrides (MXenes). Science, eabf1581(2021).
[3] Y WEI, P ZHANG, R A SOOMRO et al. Advances in the synthesis of 2D MXenes. Advanced Materials, 2103148(2021).
[4] M ALHABEB, K MALESKI, B ANASORI et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chemistry of Materials, 7633(2017).
[5] K R G LIM, M SHEKHIREV, B C WYATT et al. Fundamentals of MXene synthesis. Nature Synthesis, 601(2022).
[6] M NAGUIB, V N MOCHALIN, M W BARSOUM et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 992(2014).
[7] G M WENG, J LI, M ALHABEB et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Advanced Functional Materials, 1803360(2018).
[8] V N BORYSIUK, V N MOCHALIN, Y GOGOTSI. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology, 256705(2015).
[9] A LIPATOV, H LU, M ALHABEB et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, eaat0491(2018).
[10] S SEYEDIN, E R S YANZA, J M RAZAL. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. Journal of Materials Chemistry A, 24076(2017).
[11] A LEVITT, S SEYEDIN, J ZHANG et al. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small, 2002158(2020).
[12] S UZUN, S SEYEDIN, A L STOLTZFUS et al. Knittable and washable multifunctional MXene-coated cellulose yarns. Advanced Functional Materials, 1905015(2019).
[13] L LI, Y CAO, X LIU et al. Multifunctional MXene-based fireproof electromagnetic shielding films with exceptional anisotropic heat dissipation capability and joule heating performance. ACS Applied Materials & Interfaces, 27350(2020).
[14] J ZHANG, N KONG, S UZUN et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Advanced Materials, e2001093(2020).
[15] X JIN, J WANG, L DAI et al. Flame-retardant poly(vinyl alcohol)/ MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chemical Engineering Journal, 122475(2020).
[16] H WANG, R LU, J YAN et al. Tough and conductive nacre- inspired MXene/epoxy layered bulk nanocomposites. Angewandte Chemie International Edition, e202216874(2022).
[17] L WANG, H QIU, P SONG et al. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Composites Part A-Applied Science and Manufacturing, 293(2019).
[18] Z ZHUANG, H CHEN, C LI. Robust pristine mxene films with superhigh electromagnetic interference shielding effectiveness via spatially confined evaporation. ACS Nano, 10628(2023).
[19] L LI, Q CHENG. Bioinspired nanocomposite films with graphene and MXene. Giant, 100117(2022).
[20] S WAN, X LI, Y WANG et al. Strong sequentially bridged MXene sheets. PNAS, 27154(2020).
[21] L LI, Q CHENG. MXene based nanocomposite films. Exploration, 20220049(2022).
[22] Z LING, C E REN, M Q ZHAO et al. Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS, 16676(2014).
[23] Q YANG, Z XU, B FANG et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 22113(2017).
[24] W T CAO, F F CHEN, Y J ZHU et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 4583(2018).
[25] H SHIN, W EOM, K H LEE et al. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano, 3320(2021).
[26] S WAN, X LI, Y CHEN et al. High-strength scalable MXene films through bridging-induced densification. Science, 96(2021).
[27] T ZHOU, Y YU, B HE et al. Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nature Communications, 4564(2022).
[28] S WAN, X LI, Y CHEN et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nature Communications, 7340(2022).
[29] J LIU, Z LIU, H B ZHANG et al. Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Advanced Electronic Materials, 1901094(2020).
[30] Z MA, S KANG, J MA et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano, 8368(2020).
[31] G S LEE, T YUN, H KIM et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 11722(2020).
[32] Y WAN, P XIONG, J LIU et al. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano, 8439(2021).
[33] J LIPTON, G M WENG, M ALHABEB et al. Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale, 20295(2019).
[34] T ZHOU, C WU, Y WANG et al. Super-tough MXene-functionalized graphene sheets. Nature Communications, 2077(2020).
[35] C LEI, Y ZHANG, D LIU et al. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Applied Materials & Interfaces, 26485(2020).
[36] C JI, Y WANG, Z YE et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials. ACS Applied Materials & Interfaces, 24298(2020).
[37] T S MATHIS, K MALESKI, A GOAD et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 6420(2021).
[38] R LIU, W LI. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega, 2609(2018).
[39] H GHOLIVAND, S FULADI, Z HEMMAT et al. Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. Journal of Applied Physics, 065101(2019).
[40] L CHEN, X SHI, N YU et al. Measurement and analysis of thermal conductivity of Ti3C2Tx MXene films. Materials (Basel), 1701(2018).
[41] V P NGUYEN, M LIM, K S KIM et al. Drastically increased electrical and thermal conductivities of Pt-infiltrated MXenes. Journal of Materials Chemistry A, 10739(2021).
[42] X H ZHA, J ZHOU, Y ZHOU et al. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale, 6110(2016).
[43] L LI, M SHI, X LIU et al. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Advanced Functional Materials, 2101381(2021).
[44] Y LI, C XIONG, H HUANG et al. 2D Ti3C2Tx MXenes: visible black but infrared white materials. Advanced Materials, 2103054(2021).
[45] X LIU, X JIN, L LI et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. Journal of Materials Chemistry A, 12526(2020).
[46] L X LIU, W CHEN, H B ZHANG et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/ silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Advanced Functional Materials, 1905197(2019).
[47] F SHAHZAD, M ALHABEB, C B HATTER et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 1137(2016).
[48] B ANASORI, M R LUKATSKAYA, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 17(2017).
[49] T YUN, H KIM, A IQBAL et al. Electromagnetic shielding of monolayer MXene assemblies. Advanced Materials, e1906769(2020).
[50] Y KANG, T HU, Y WANG et al. Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving. Nature Communications, 4075(2023).
[51] J YAN, C E REN, K MALESKI et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 1701264(2017).
[52] K WANG, Z LOU, L WANG et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 9139(2019).