[2] Jing Xu, Chuan Tang, Kuangjunyu Yang. Analysis on the international development strategies and trends of quantum sensing and measurement. World Sci-Tech R & D, 44, 46-58(2022).
[3] Kuangjunyu Yang, Jing Xu, Chuan Tang. Trend observation: strategic deployment and research hotspots in the field of international quantum sensing and measurement. Bulletin of Chinese Academy of Sciences, 37, 259-263(2022).
[4] A Ashkin. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 24, 156-159(1970).
[5] A Ashkin, J M Dziedzic. Optical levitation by radiation pressure. Applied Physics Letters, 19, 283-285(1971).
[6] A Ashkin, J Dziedzic. Optical levitation in high vacuum. Applied Physics Letters, 28, 333-335(1976).
[7] A Ashkin, J M Dziedzic, J E Bjorkholm, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11, 288(1986).
[8] Huizhu Hu, Zhangqi Yin, Nan Li, . Inertial sensing disruptive technology based on levitated optomechanics. Strategic Study of CAE, 20, 112-116(2018).
[9] S Chu, L Hollberg, J E Bjorkholm, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Physical Review Letters, 55, 48-51(1985).
[10] A Lenef, S C Rand. Electronic structure of the N-V center in diamond: Theory. Physical Review B, 53, 13441(1996).
[11] R Li, F Kong, P Zhao, et al. Nanoscale electrometry based on a magnetic-field-resistant spin sensor. Physical Review Letters, 124, 247701(2020).
[12] D C Moore, A A Geraci. Searching for new physics using optically levitated sensors. Quantum Science Technology, 6, 014008(2021).
[13] L S Madsen, M Waleed, C A Casacio, et al. Ultrafast viscosity measurement with ballistic optical tweezers. Nature Photonics, 15, 386-392(2021).
[14] J Gieseler, J R Gomez-solano, A Magazzù, et al. Optical tweezers-from calibration to applications: a tutorial. Advances in Optics and Photonics, 13, 74-241(2021).
[15] F Monteiro, G Afek, D Carney, et al. Search for composite dark matter with optically levitated sensors. Physical Review Letters, 125, 181102(2020).
[16] J Chan, T M Alegre, A H Safavi-naeini, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).
[17] R Kaltenbaek, G Hechenblaikner, N Kiesel, et al. Macroscopic quantum resonators (MAQRO) testing quantum and gravitational physics with massive mechanical resonators. Experimental Astronomy, 34, 123-164(2012).
[18] T Li, S Kheifets, D Medellin, et al. Measurement of the instantaneous velocity of a Brownian particle. Science, 328, 1673-1675(2010).
[19] U Delić, M Reisenbauer, K Dare, et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).
[21] J Millen, T S Monteiro, R Pettit, et al. Optomechanics with levitated particles. Reports on Progress in Physics, 83, 026401(2020).
[22] J Gieseler, B Deutsch, R Quidant, et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Physical Review Letters, 109, 103603(2012).
[23] J Vovrosh, M Rashid, D Hempston, et al. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. Journal of the Optical Society of America B: Optical Physics, 34, 1421-1428(2017).
[24] X Chen, G Xiao, H Luo, et al. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset. Optics Express, 24, 7575-7584(2016).
[25] W Li, N Li, Y Shen, et al. Dynamic analysis and rotation experiment of an optical-trapped microsphere in air. Applied Optics, 57, 823-828(2018).
[26] G Xiao, K Yang, H Luo, et al. Orbital rotation of trapped particle in a transversely misaligned dual-fiber optical trap. IEEE Photonics Journal, 8, 1-8(2016).
[27] X Zhu, N Li, J Yang, et al. Revolution of a trapped particle in counter-propagating dual-beam optical tweezers under low pressure. Optics Express, 29, 11169-11180(2021).
[28] Zhu Xunmin. Motion detection cooling of a largesized xicrosphere in dualbeam optical trap in vacuum[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[29] Li Wenqiang. Research on dynamic analysis of trapped microsphere in nonliquid optical tweezers [D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[30] F Monteiro, S Ghosh, A G Fine, et al. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Physical Review A, 96, 063841(2017).
[31] D C Moore, A D Rider, G Gratta. Search for millicharged particles using optically levitated microspheres. Physical Review Letters, 113, 251801(2014).
[32] J Ahn, Z Xu, J Bang, et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nature Nanotechnology, 15, 89-93(2020).
[33] J Millen, T Deesuwan, P Barker, et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotechnology, 9, 425-429(2014).
[34] G Xiao, T Kuang, W Xiong, et al. A PZT-assisted single particle loading method for dual-fiber optical trap in air. Optics & Laser Technology, 126, 106115(2020).
[35] F Blaser, N Kiesel, U Deli, et al. Cavity cooling of an optically levitated submicron particle. Proceedings of the National Academy of Sciences of the United States of America, 110, 14180-14185(2013).
[36] Li T. Fundamental Tests of Physics with Optically Trapped Microspheres[M]. Berlin: Springer Science & Business Media, 2012.
[37] Wei Xiong, Tengfang Kuang, Weiqing Zeng, . A repeatable single particle loading technology in the practical light force accelerometer. Navigation Positioning and Timing, 9, 160-166(2022).
[38] Z Fu, X She, N Li, et al. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap. Optics Communications, 417, 103-109(2018).
[39] Yuan Tian, Yu Zheng, Guangcan Guo, . Technique and application of vacuum optical tweezers. Physics Experimentation, 41, 1-8,21(2021).
[41] T A Nieminen, V L Loke, A B Stilgoe, et al. Optical tweezers computational toolbox. Journal of Optics A: Pure Applied Optics, 9, S196(2007).
[42] A Callegari, M Mijalkov, A B Gököz, et al. Computational toolbox for optical tweezers in geometrical optics. Journal of the Optical Society of America B: Optical Physics, 32, 11-19(2015).
[43] M A Taylor, M Waleed, A B Stilgoe, et al. Enhanced optical trapping via structured scattering. Nature Photonics, 9, 669-673(2015).
[44] Y Liu, L Fan, Y E Lee, et al. Optimal nanoparticle forces, torques, and illumination fields. ACS Photonics, 6, 395-402(2018).
[45] Y Jiang, X Zhu, W Yu, et al. Propagation characteristics of the modified circular airy beam. Optics Express, 23, 29834-29841(2015).
[46] Z Liu, X Wang, K Hang. Enhancement of trapping efficiency by utilizing a hollow sinh-Gaussian beam. Scientific Reports, 9, 10187(2019).
[47] Y Kozawa, S Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Optics Express, 18, 10828-10833(2010).
[48] A M Shaltout, V M Shalaev, M L Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, 3100(2019).
[49] V Ginis, P Tassin, C M Soukoulis, et al. Enhancing optical gradient forces with metamaterials. Physical Review Letters, 110, 057401(2013).
[50] M G Scullion, Y Arita, T F Krauss, et al. Enhancement of optical forces using slow light in a photonic crystal waveguide. Optica, 2, 816-821(2015).
[51] B Zhu, G Ren, Y Gao, et al. Strong light confinement and gradient force in a hexagonal boron nitride slot waveguide. Optics Letters, 41, 4991-4994(2016).
[52] T Cao, J Bao, L Mao. Switching of giant lateral force on sub-10 nm particle using phase-change nanoantenna. Advanced Theory and Simulations, 1, 1700027(2018).
[53] B Qian, D Montiel, A Bregulla, et al. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chemical Science, 4, 1420-1429(2013).
[54] K Svoboda, S M Block. Optical trapping of metallic Rayleigh particles. Optics Letters, 19, 930-932(1994).
[55] D B Phillips, M J Padgett, S Hanna, et al. Shape-induced force fields in optical trapping. Nature Photonics, 8, 400-405(2014).
[56] X Shan, F Wang, D Wang, et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nature Nanotechnology, 16, 531-537(2021).
[57] A Jannasch, A F Demirörs, Oostrum P D Van, et al. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photonics, 6, 469-473(2012).
[58] M Peng, H Luo, W Xiong, et al. Enhanced optical trapping of ZrO2@TiO2 photonic force probe with broadened solvent compatibility. Optics Express, 30, 46060-46069(2022).
[59] Xiong Wei. Preliminary research on they experiment of the openloop light fce acceleration sensing based on the dualbeam optical trap[D]. Changsha: National University of Defense Technology, 2019. (in Chinese)
[60] F Gittes, C F Schmidt. Interference model for back-focal-plane displacement detection in optical tweezers. Optics Letters, 23, 7-9(1998).
[61] G Volpe, G Kozyreff, D Petrov. Backscattering position detection for photonic force microscopy. Journal of Applied Physics, 102, 084701(2007).
[62] M A Taylor, W P Bowen. A computational tool to characterize particle tracking measurements in optical tweezers. Journal of Optics, 15, 085701(2013).
[63] G Ranjit, D P Atherton, J H Stutz, et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum. Physical Review A, 91, 051805(2015).
[64] G Ranjit, M Cunningham, K Casey, et al. Zeptonewton force sensing with nanospheres in an optical lattice. Physical Review A, 93, 053801(2016).
[65] W Xiong, G Xiao, X Han, et al. Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps. Optics Express, 25, 9449-9457(2017).
[66] X Zhu, N Li, J Yang, et al. Displacement displacement detection decoupling in counter-propagating dual-beams optical tweezers with large-sized particle. Sensors (Basel), 20, 4916(2020).
[67] Yingying Wang, Peitong He, Tao Liang, . A low-noise quadrant photodetector for levitated optomechanical systems. Acta Optica Sinica, 43, 1104001(2023).
[68] T C Li, S Kheifets, M G Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Physics, 7, 527-530(2011).
[69] A D Rider, C P Blakemore, G Gratta, et al. Single-beam dielectric-microsphere trapping with optical heterodyne detection. Physical Review A, 97, 013842(2018).
[70] Z Chen, T Kuang, X Han, et al. Differential displacement measurement of the levitated particle using D-shaped mirrors in the optical tweezers. Optics Express, 30, 30791-30798(2022).
[71] C Jensen-mcmullin, H P Lee, E R Lyons. Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap. Optics Express, 13, 2634-2642(2005).
[72] I Chavez, R Huang, K Henderson, et al. Development of a fast position-sensitive laser beam detector. Review of Scientific Instruments, 79, 105104(2008).
[73] C Ti, M T Ho-thanh, Q Wen, et al. Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system. Scientific Reports, 7, 13168(2017).
[74] W Xiong, G Xiao, X Han, et al. All-fiber interferometer for displacement and velocity measurement of a levitated particle in fiber-optic traps. Applied Optics, 58, 2081-2084(2019).
[75] E Hebestreit, M Frimmer, R Reimann, et al. Calibration and energy measurement of optically levitated nanoparticle sensors. Review of Scientific Instruments, 89, 033111(2018).
[76] Y Zheng, L M Zhou, Y Dong, et al. Robust optical-levitation-based metrology of nanoparticle's position and mass. Physical Review Letters, 124, 223603(2020).
[77] Yisong Wang, Shuling Hu, Yongfeng Zhang. Review on frontier research of optical force accelerometer in inertial navigation application. Laser & Optoelectronics Progress, 59, 1100008(2022).
[78] F Monteiro, W Li, G Afek, et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Physical Review A, 101, 053835(2020).
[79] C W Lewandowski, T D Knowles, Z B Etienne, et al. High-sensitivity accelerometry with a feedback-cooled magnetically levitated microsphere. Physical Review Applied, 15, 014050(2021).
[80] F Tebbenjohanns, M Frimmer, A Militaru, et al. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Physical Review Letters, 122, 223601(2019).
[81] G P Conangla, F Ricci, M T Cuairan, et al. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control. Physical Review Letters, 122, 223602(2019).
[82] V Jain, J Gieseler, C Moritz, et al. Direct measurement of photon recoil from a levitated nanoparticle. Physical Review Letters, 116, 243601(2016).
[83] Jain V, Tebbenjohanns F, Novotny L. Microkelvin control of an optically levitated nanoparticle [C]Frontiers in Optics 2016, OSA Technical Digest (online) (Optica Publishing Group, 2016), 2016: FF5B.2.
[84] J Vijayan, Z Zhang, J Piotrowski, et al. Scalable all-optical cold damping of levitated nanoparticles. Nature Nanotechnology, 18, 49-54(2023).
[85] M Aspelmeyer, T J Kippenberg, F Marquardt. Cavity optomechanics. Reviews of Modern Physics, 86, 1391(2014).
[86] J Piotrowski, D Windey, J Vijayan, et al. Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle. Nature Physics, 6, 1-5(2023).
[87] F Kalantarifard, P Elahi, G Makey, et al. Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Nature Communications, 10, 2683(2019).
[88] G Xiao, T Kuang, B Luo, et al. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers. Optics Express, 27, 36653-36661(2019).
[89] T Kuang, W Xiong, B Luo, et al. Optical confinement efficiency in the single beam intracavity optical tweezers. Optics Express, 28, 35734-35747(2020).
[90] T Kuang, Z Liu, W Xiong, et al. Dual-beam intracavity optical tweezers with all-optical independent axial and radial self-feedback control schemes. Optics Express, 29, 29936-29945(2021).
[91] T Kuang, R Huang, W Xiong, et al. Nonlinear multi-frequency phonon lasers with active levitated optomechanics. Nature Physics, 1-6(2023).
[92] A Arvanitaki, A A Geraci. Detecting high-frequency gravitational waves with optically levitated sensors. Physical Review Letters, 110, 071105(2013).
[93] T Liang, S Zhu, P He, et al. Yoctonewton force detection based on optically levitated oscillator. Fundamental Research, 3, 57-62(2022).
[94] D Hempston, J Vovrosh, M Toroš, et al. Force sensing with an optically levitated charged nanoparticle. Applied Physics Letters, 111, 133111(2017).
[95] Huafeng Liu, Shimin Jiao, Liangcheng Tu. Status and trend of optomechanical accelerometers abroad. Navigation and Control, 20, 1-8, 43(2021).
[96] Butts D L. Development of a light fce accelerometer[D]. US: Massachusetts Institute of Technology, 2008.
[97] Kotru K. Toward a demonstration of a light fce accelerometer[D]. US: Massachusetts Institute of Technology, 2010.
[98] J Pu, K Zeng, Y Wu, et al. Miniature optical force levitation system. Chinese Optics Letters, 20, 013801(2022).
[99] K Zeng, J Pu, Y Wu, et al. Centrifugal motion of an optically levitated particle. Optics Letters, 46, 4635-4638(2021).
[100] J Pu, K Zeng, Y Wu, et al. A miniature optical force dual-axis accelerometer based on laser diodes and small particles cavities. Micromachines(Basel), 12, 1375(2021).
[101] C Li, T-W Chou. Mass detection using carbon nanotube-based nanomechanical resonators. Applied Physics Letters, 84, 5246-5248(2004).
[102] J Chaste, A Eichler, J Moser, et al. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotechnology, 7, 301-304(2012).
[103] C P Blakemore, A D Rider, S Roy, et al. Precision mass and density measurement of individual optically levitated microspheres. Physical Review Applied, 12, 024037(2019).
[104] F Ricci, M T Cuairan, G P Conangla, et al. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing. Nano Letters, 19, 6711-6715(2019).
[105] Y Zheng, G Guo, F Sun. Cooling of a levitated nanoparticle with digital parametric feedback. Applied Physics Letters, 115, 101105(2019).
[106] S Zhu, Z Fu, X Gao, et al. Nanoscale electric field sensing using a levitated nano-resonator with net charge. Photonics Research, 11, 279-289(2023).
[107] R A Beth. Mechanical detection and measurement of the angular momentum of light. Physical Review, 50, 115(1936).
[108] N B Simpson, K Dholakia, L Allen, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Optics Letters, 22, 52-54(1997).
[109] M Padgett, L Allen. The angular momentum of light: optical spanners and the rotational frequency shift. Optical and Quantum Electronics, 31, 1-12(1999).
[110] Xiang Han, Xinlin Chen, Wei Xiong, . Vaccum optical tweezers system and its research progress in precision measurement. Chinese Journal of Lasers, 48, 0401011(2021).
[111] Y Arita, M Mazilu, K Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nature Communications, 4, 2374(2013).
[112] R Reimann, M Doderer, E Hebestreit, et al. GHz rotation of an optically trapped nanoparticle in vacuum. Physical Review Letters, 121, 033602(2018).
[113] Y Jin, J Yan, S J Rahman, et al. 6 GHz hyperfast rotation of an optically levitated nanoparticle in vacuum. Photonics Research, 9, 1344-1350(2021).
[114] T M Hoang, Y Ma, J Ahn, et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Physical Review Letters, 117, 123604(2016).
[115] J Ahn, Z Xu, J Bang, et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Physical Review Letters, 121, 033603(2018).