• Infrared and Laser Engineering
  • Vol. 52, Issue 6, 20230193 (2023)
Haoming Zhang1,2, Wei Xiong1,2, Xiang Han1,2, Xinlin Chen1,2..., Tengfang Kuang1,2, Miao Peng1,2, Jie Yuan1,2, Zhongqi Tan1,2, Guangzong Xiao1,2 and Hui Luo1,2|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20230193 Cite this Article
    Haoming Zhang, Wei Xiong, Xiang Han, Xinlin Chen, Tengfang Kuang, Miao Peng, Jie Yuan, Zhongqi Tan, Guangzong Xiao, Hui Luo. Research progress in levitated optomechanical sensing technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230193 Copy Citation Text show less
    References

    [2] Jing Xu, Chuan Tang, Kuangjunyu Yang. Analysis on the international development strategies and trends of quantum sensing and measurement. World Sci-Tech R & D, 44, 46-58(2022).

    [3] Kuangjunyu Yang, Jing Xu, Chuan Tang. Trend observation: strategic deployment and research hotspots in the field of international quantum sensing and measurement. Bulletin of Chinese Academy of Sciences, 37, 259-263(2022).

    [4] A Ashkin. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 24, 156-159(1970).

    [5] A Ashkin, J M Dziedzic. Optical levitation by radiation pressure. Applied Physics Letters, 19, 283-285(1971).

    [6] A Ashkin, J Dziedzic. Optical levitation in high vacuum. Applied Physics Letters, 28, 333-335(1976).

    [7] A Ashkin, J M Dziedzic, J E Bjorkholm, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11, 288(1986).

    [8] Huizhu Hu, Zhangqi Yin, Nan Li, . Inertial sensing disruptive technology based on levitated optomechanics. Strategic Study of CAE, 20, 112-116(2018).

    [9] S Chu, L Hollberg, J E Bjorkholm, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Physical Review Letters, 55, 48-51(1985).

    [10] A Lenef, S C Rand. Electronic structure of the N-V center in diamond: Theory. Physical Review B, 53, 13441(1996).

    [11] R Li, F Kong, P Zhao, et al. Nanoscale electrometry based on a magnetic-field-resistant spin sensor. Physical Review Letters, 124, 247701(2020).

    [12] D C Moore, A A Geraci. Searching for new physics using optically levitated sensors. Quantum Science Technology, 6, 014008(2021).

    [13] L S Madsen, M Waleed, C A Casacio, et al. Ultrafast viscosity measurement with ballistic optical tweezers. Nature Photonics, 15, 386-392(2021).

    [14] J Gieseler, J R Gomez-solano, A Magazzù, et al. Optical tweezers-from calibration to applications: a tutorial. Advances in Optics and Photonics, 13, 74-241(2021).

    [15] F Monteiro, G Afek, D Carney, et al. Search for composite dark matter with optically levitated sensors. Physical Review Letters, 125, 181102(2020).

    [16] J Chan, T M Alegre, A H Safavi-naeini, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).

    [17] R Kaltenbaek, G Hechenblaikner, N Kiesel, et al. Macroscopic quantum resonators (MAQRO) testing quantum and gravitational physics with massive mechanical resonators. Experimental Astronomy, 34, 123-164(2012).

    [18] T Li, S Kheifets, D Medellin, et al. Measurement of the instantaneous velocity of a Brownian particle. Science, 328, 1673-1675(2010).

    [19] U Delić, M Reisenbauer, K Dare, et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367, 892-895(2020).

    [21] J Millen, T S Monteiro, R Pettit, et al. Optomechanics with levitated particles. Reports on Progress in Physics, 83, 026401(2020).

    [22] J Gieseler, B Deutsch, R Quidant, et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Physical Review Letters, 109, 103603(2012).

    [23] J Vovrosh, M Rashid, D Hempston, et al. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. Journal of the Optical Society of America B: Optical Physics, 34, 1421-1428(2017).

    [24] X Chen, G Xiao, H Luo, et al. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset. Optics Express, 24, 7575-7584(2016).

    [25] W Li, N Li, Y Shen, et al. Dynamic analysis and rotation experiment of an optical-trapped microsphere in air. Applied Optics, 57, 823-828(2018).

    [26] G Xiao, K Yang, H Luo, et al. Orbital rotation of trapped particle in a transversely misaligned dual-fiber optical trap. IEEE Photonics Journal, 8, 1-8(2016).

    [27] X Zhu, N Li, J Yang, et al. Revolution of a trapped particle in counter-propagating dual-beam optical tweezers under low pressure. Optics Express, 29, 11169-11180(2021).

    [28] Zhu Xunmin. Motion detection cooling of a largesized xicrosphere in dualbeam optical trap in vacuum[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)

    [29] Li Wenqiang. Research on dynamic analysis of trapped microsphere in nonliquid optical tweezers [D]. Hangzhou: Zhejiang University, 2020. (in Chinese)

    [30] F Monteiro, S Ghosh, A G Fine, et al. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Physical Review A, 96, 063841(2017).

    [31] D C Moore, A D Rider, G Gratta. Search for millicharged particles using optically levitated microspheres. Physical Review Letters, 113, 251801(2014).

    [32] J Ahn, Z Xu, J Bang, et al. Ultrasensitive torque detection with an optically levitated nanorotor. Nature Nanotechnology, 15, 89-93(2020).

    [33] J Millen, T Deesuwan, P Barker, et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotechnology, 9, 425-429(2014).

    [34] G Xiao, T Kuang, W Xiong, et al. A PZT-assisted single particle loading method for dual-fiber optical trap in air. Optics & Laser Technology, 126, 106115(2020).

    [35] F Blaser, N Kiesel, U Deli, et al. Cavity cooling of an optically levitated submicron particle. Proceedings of the National Academy of Sciences of the United States of America, 110, 14180-14185(2013).

    [36] Li T. Fundamental Tests of Physics with Optically Trapped Microspheres[M]. Berlin: Springer Science & Business Media, 2012.

    [37] Wei Xiong, Tengfang Kuang, Weiqing Zeng, . A repeatable single particle loading technology in the practical light force accelerometer. Navigation Positioning and Timing, 9, 160-166(2022).

    [38] Z Fu, X She, N Li, et al. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap. Optics Communications, 417, 103-109(2018).

    [39] Yuan Tian, Yu Zheng, Guangcan Guo, . Technique and application of vacuum optical tweezers. Physics Experimentation, 41, 1-8,21(2021).

    [41] T A Nieminen, V L Loke, A B Stilgoe, et al. Optical tweezers computational toolbox. Journal of Optics A: Pure Applied Optics, 9, S196(2007).

    [42] A Callegari, M Mijalkov, A B Gököz, et al. Computational toolbox for optical tweezers in geometrical optics. Journal of the Optical Society of America B: Optical Physics, 32, 11-19(2015).

    [43] M A Taylor, M Waleed, A B Stilgoe, et al. Enhanced optical trapping via structured scattering. Nature Photonics, 9, 669-673(2015).

    [44] Y Liu, L Fan, Y E Lee, et al. Optimal nanoparticle forces, torques, and illumination fields. ACS Photonics, 6, 395-402(2018).

    [45] Y Jiang, X Zhu, W Yu, et al. Propagation characteristics of the modified circular airy beam. Optics Express, 23, 29834-29841(2015).

    [46] Z Liu, X Wang, K Hang. Enhancement of trapping efficiency by utilizing a hollow sinh-Gaussian beam. Scientific Reports, 9, 10187(2019).

    [47] Y Kozawa, S Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Optics Express, 18, 10828-10833(2010).

    [48] A M Shaltout, V M Shalaev, M L Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, 3100(2019).

    [49] V Ginis, P Tassin, C M Soukoulis, et al. Enhancing optical gradient forces with metamaterials. Physical Review Letters, 110, 057401(2013).

    [50] M G Scullion, Y Arita, T F Krauss, et al. Enhancement of optical forces using slow light in a photonic crystal waveguide. Optica, 2, 816-821(2015).

    [51] B Zhu, G Ren, Y Gao, et al. Strong light confinement and gradient force in a hexagonal boron nitride slot waveguide. Optics Letters, 41, 4991-4994(2016).

    [52] T Cao, J Bao, L Mao. Switching of giant lateral force on sub-10 nm particle using phase-change nanoantenna. Advanced Theory and Simulations, 1, 1700027(2018).

    [53] B Qian, D Montiel, A Bregulla, et al. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chemical Science, 4, 1420-1429(2013).

    [54] K Svoboda, S M Block. Optical trapping of metallic Rayleigh particles. Optics Letters, 19, 930-932(1994).

    [55] D B Phillips, M J Padgett, S Hanna, et al. Shape-induced force fields in optical trapping. Nature Photonics, 8, 400-405(2014).

    [56] X Shan, F Wang, D Wang, et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nature Nanotechnology, 16, 531-537(2021).

    [57] A Jannasch, A F Demirörs, Oostrum P D Van, et al. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photonics, 6, 469-473(2012).

    [58] M Peng, H Luo, W Xiong, et al. Enhanced optical trapping of ZrO2@TiO2 photonic force probe with broadened solvent compatibility. Optics Express, 30, 46060-46069(2022).

    [59] Xiong Wei. Preliminary research on they experiment of the openloop light fce acceleration sensing based on the dualbeam optical trap[D]. Changsha: National University of Defense Technology, 2019. (in Chinese)

    [60] F Gittes, C F Schmidt. Interference model for back-focal-plane displacement detection in optical tweezers. Optics Letters, 23, 7-9(1998).

    [61] G Volpe, G Kozyreff, D Petrov. Backscattering position detection for photonic force microscopy. Journal of Applied Physics, 102, 084701(2007).

    [62] M A Taylor, W P Bowen. A computational tool to characterize particle tracking measurements in optical tweezers. Journal of Optics, 15, 085701(2013).

    [63] G Ranjit, D P Atherton, J H Stutz, et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum. Physical Review A, 91, 051805(2015).

    [64] G Ranjit, M Cunningham, K Casey, et al. Zeptonewton force sensing with nanospheres in an optical lattice. Physical Review A, 93, 053801(2016).

    [65] W Xiong, G Xiao, X Han, et al. Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps. Optics Express, 25, 9449-9457(2017).

    [66] X Zhu, N Li, J Yang, et al. Displacement displacement detection decoupling in counter-propagating dual-beams optical tweezers with large-sized particle. Sensors (Basel), 20, 4916(2020).

    [67] Yingying Wang, Peitong He, Tao Liang, . A low-noise quadrant photodetector for levitated optomechanical systems. Acta Optica Sinica, 43, 1104001(2023).

    [68] T C Li, S Kheifets, M G Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Physics, 7, 527-530(2011).

    [69] A D Rider, C P Blakemore, G Gratta, et al. Single-beam dielectric-microsphere trapping with optical heterodyne detection. Physical Review A, 97, 013842(2018).

    [70] Z Chen, T Kuang, X Han, et al. Differential displacement measurement of the levitated particle using D-shaped mirrors in the optical tweezers. Optics Express, 30, 30791-30798(2022).

    [71] C Jensen-mcmullin, H P Lee, E R Lyons. Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap. Optics Express, 13, 2634-2642(2005).

    [72] I Chavez, R Huang, K Henderson, et al. Development of a fast position-sensitive laser beam detector. Review of Scientific Instruments, 79, 105104(2008).

    [73] C Ti, M T Ho-thanh, Q Wen, et al. Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system. Scientific Reports, 7, 13168(2017).

    [74] W Xiong, G Xiao, X Han, et al. All-fiber interferometer for displacement and velocity measurement of a levitated particle in fiber-optic traps. Applied Optics, 58, 2081-2084(2019).

    [75] E Hebestreit, M Frimmer, R Reimann, et al. Calibration and energy measurement of optically levitated nanoparticle sensors. Review of Scientific Instruments, 89, 033111(2018).

    [76] Y Zheng, L M Zhou, Y Dong, et al. Robust optical-levitation-based metrology of nanoparticle's position and mass. Physical Review Letters, 124, 223603(2020).

    [77] Yisong Wang, Shuling Hu, Yongfeng Zhang. Review on frontier research of optical force accelerometer in inertial navigation application. Laser & Optoelectronics Progress, 59, 1100008(2022).

    [78] F Monteiro, W Li, G Afek, et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Physical Review A, 101, 053835(2020).

    [79] C W Lewandowski, T D Knowles, Z B Etienne, et al. High-sensitivity accelerometry with a feedback-cooled magnetically levitated microsphere. Physical Review Applied, 15, 014050(2021).

    [80] F Tebbenjohanns, M Frimmer, A Militaru, et al. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Physical Review Letters, 122, 223601(2019).

    [81] G P Conangla, F Ricci, M T Cuairan, et al. Optimal feedback cooling of a charged levitated nanoparticle with adaptive control. Physical Review Letters, 122, 223602(2019).

    [82] V Jain, J Gieseler, C Moritz, et al. Direct measurement of photon recoil from a levitated nanoparticle. Physical Review Letters, 116, 243601(2016).

    [83] Jain V, Tebbenjohanns F, Novotny L. Microkelvin control of an optically levitated nanoparticle [C]Frontiers in Optics 2016, OSA Technical Digest (online) (Optica Publishing Group, 2016), 2016: FF5B.2.

    [84] J Vijayan, Z Zhang, J Piotrowski, et al. Scalable all-optical cold damping of levitated nanoparticles. Nature Nanotechnology, 18, 49-54(2023).

    [85] M Aspelmeyer, T J Kippenberg, F Marquardt. Cavity optomechanics. Reviews of Modern Physics, 86, 1391(2014).

    [86] J Piotrowski, D Windey, J Vijayan, et al. Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle. Nature Physics, 6, 1-5(2023).

    [87] F Kalantarifard, P Elahi, G Makey, et al. Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Nature Communications, 10, 2683(2019).

    [88] G Xiao, T Kuang, B Luo, et al. Coupling between axial and radial motions of microscopic particle trapped in the intracavity optical tweezers. Optics Express, 27, 36653-36661(2019).

    [89] T Kuang, W Xiong, B Luo, et al. Optical confinement efficiency in the single beam intracavity optical tweezers. Optics Express, 28, 35734-35747(2020).

    [90] T Kuang, Z Liu, W Xiong, et al. Dual-beam intracavity optical tweezers with all-optical independent axial and radial self-feedback control schemes. Optics Express, 29, 29936-29945(2021).

    [91] T Kuang, R Huang, W Xiong, et al. Nonlinear multi-frequency phonon lasers with active levitated optomechanics. Nature Physics, 1-6(2023).

    [92] A Arvanitaki, A A Geraci. Detecting high-frequency gravitational waves with optically levitated sensors. Physical Review Letters, 110, 071105(2013).

    [93] T Liang, S Zhu, P He, et al. Yoctonewton force detection based on optically levitated oscillator. Fundamental Research, 3, 57-62(2022).

    [94] D Hempston, J Vovrosh, M Toroš, et al. Force sensing with an optically levitated charged nanoparticle. Applied Physics Letters, 111, 133111(2017).

    [95] Huafeng Liu, Shimin Jiao, Liangcheng Tu. Status and trend of optomechanical accelerometers abroad. Navigation and Control, 20, 1-8, 43(2021).

    [96] Butts D L. Development of a light fce accelerometer[D]. US: Massachusetts Institute of Technology, 2008.

    [97] Kotru K. Toward a demonstration of a light fce accelerometer[D]. US: Massachusetts Institute of Technology, 2010.

    [98] J Pu, K Zeng, Y Wu, et al. Miniature optical force levitation system. Chinese Optics Letters, 20, 013801(2022).

    [99] K Zeng, J Pu, Y Wu, et al. Centrifugal motion of an optically levitated particle. Optics Letters, 46, 4635-4638(2021).

    [100] J Pu, K Zeng, Y Wu, et al. A miniature optical force dual-axis accelerometer based on laser diodes and small particles cavities. Micromachines(Basel), 12, 1375(2021).

    [101] C Li, T-W Chou. Mass detection using carbon nanotube-based nanomechanical resonators. Applied Physics Letters, 84, 5246-5248(2004).

    [102] J Chaste, A Eichler, J Moser, et al. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotechnology, 7, 301-304(2012).

    [103] C P Blakemore, A D Rider, S Roy, et al. Precision mass and density measurement of individual optically levitated microspheres. Physical Review Applied, 12, 024037(2019).

    [104] F Ricci, M T Cuairan, G P Conangla, et al. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing. Nano Letters, 19, 6711-6715(2019).

    [105] Y Zheng, G Guo, F Sun. Cooling of a levitated nanoparticle with digital parametric feedback. Applied Physics Letters, 115, 101105(2019).

    [106] S Zhu, Z Fu, X Gao, et al. Nanoscale electric field sensing using a levitated nano-resonator with net charge. Photonics Research, 11, 279-289(2023).

    [107] R A Beth. Mechanical detection and measurement of the angular momentum of light. Physical Review, 50, 115(1936).

    [108] N B Simpson, K Dholakia, L Allen, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Optics Letters, 22, 52-54(1997).

    [109] M Padgett, L Allen. The angular momentum of light: optical spanners and the rotational frequency shift. Optical and Quantum Electronics, 31, 1-12(1999).

    [110] Xiang Han, Xinlin Chen, Wei Xiong, . Vaccum optical tweezers system and its research progress in precision measurement. Chinese Journal of Lasers, 48, 0401011(2021).

    [111] Y Arita, M Mazilu, K Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nature Communications, 4, 2374(2013).

    [112] R Reimann, M Doderer, E Hebestreit, et al. GHz rotation of an optically trapped nanoparticle in vacuum. Physical Review Letters, 121, 033602(2018).

    [113] Y Jin, J Yan, S J Rahman, et al. 6  GHz hyperfast rotation of an optically levitated nanoparticle in vacuum. Photonics Research, 9, 1344-1350(2021).

    [114] T M Hoang, Y Ma, J Ahn, et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Physical Review Letters, 117, 123604(2016).

    [115] J Ahn, Z Xu, J Bang, et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Physical Review Letters, 121, 033603(2018).

    Haoming Zhang, Wei Xiong, Xiang Han, Xinlin Chen, Tengfang Kuang, Miao Peng, Jie Yuan, Zhongqi Tan, Guangzong Xiao, Hui Luo. Research progress in levitated optomechanical sensing technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230193
    Download Citation