• Optoelectronic Technology
  • Vol. 42, Issue 2, 81 (2022)
Fei XIONG1, Zhenhua XING1, Yixin ZHANG2,4, Dao ZHANG3..., Yaze CHEN2, Xing FANG2, Xuping ZHANG2,4 and Feng WANG2|Show fewer author(s)
Author Affiliations
  • 1Inner Mongolia Electric Power Survey & Design Institute Co.,Ltd,Hohhot Inner Mongolia 000,CHN
  • 2College of Engineering and Applied Sciences Nanjing University,Nanjing 1003,CHN
  • 3Nanjing Fiber Photonics Technology Co.,Ltd,Nanjing 21115,CHN
  • 4Shenzhen Research Institute of Nanjing University,Shenzhen Guangdong 518000,CHN
  • show less
    DOI: 10.19453/j.cnki.1005-488x.2022.02.001 Cite this Article
    Fei XIONG, Zhenhua XING, Yixin ZHANG, Dao ZHANG, Yaze CHEN, Xing FANG, Xuping ZHANG, Feng WANG. Φ‑OTDR‑based On‑line Monitoring Method for Overhead Transmission Line Icing[J]. Optoelectronic Technology, 2022, 42(2): 81 Copy Citation Text show less
    The phase discrimination principle of Φ-OTDR
    Fig. 1. The phase discrimination principle of Φ-OTDR
    Initial configuration of overhead power transmission line
    Fig. 2. Initial configuration of overhead power transmission line
    Schematic of icing simulation device
    Fig. 3. Schematic of icing simulation device
    Time domain and frequency spectra of phase difference in three phase discrimination intervals
    Fig. 4. Time domain and frequency spectra of phase difference in three phase discrimination intervals
    Frequency spectra of phase difference after falling of weights with different masses at the midpoint
    Fig. 5. Frequency spectra of phase difference after falling of weights with different masses at the midpoint
    The vibration spectra of suspended optical fiber with different mid-span sags
    Fig. 6. The vibration spectra of suspended optical fiber with different mid-span sags
    The relationship between the natural frequency of suspended fiber and the mid-span sag
    Fig. 7. The relationship between the natural frequency of suspended fiber and the mid-span sag
    Compact fiber coated with different layers of silicone rubber
    Fig. 8. Compact fiber coated with different layers of silicone rubber
    Spectra of phase difference signal under no coating and different layers of coating with silicone rubber
    Fig. 9. Spectra of phase difference signal under no coating and different layers of coating with silicone rubber
    The relationship between the natural frequency of suspended optical fiber and the number of coating layers
    Fig. 10. The relationship between the natural frequency of suspended optical fiber and the number of coating layers
    参数名称悬链线法有限元法误差/(‰)
    水平张力/N10 00010 000.659 50.07
    最大张力/N10 040.86610 041.076 20.02
    跨中弧垂/m4.521 94.519 30.5
    索长/m200.272 4200.272 10.001 5
    Table 1. Comparison of theoretical values of parameters calculated by catenary method with those simulated by finite element method
    水平张力/N
    9 00010 00011 00012 00013 000 000
    第一振型0.2470.2600.2730.2850.297
    第二振型0.4930.5200.5460.5700.594
    第三振型0.7400.7810.8190.8550.891
    第四振型0.9871.0411.091.141.18
    Table 2. Natural frequencies of out‑of‑plane vibration under different horizontal tensions
    水平张力/N
    9 00010 00011 00012 00013 000

    对称

    第一振型

    ///0.5630.541

    反对称

    第一振型

    0.4920.5190.5450.5690.593

    对称

    第二振型

    0.628

    /0.837

    0.612

    /0.836

    0.587

    /0.854

    0.8800.909

    反对称

    第二振型

    0.9871.0401.0921.1411.187

    对称

    第三振型

    1.2451.3091.3701.4301.488
    Table 3. Natural frequencies of in-plane vibration under different horizontal tensions
    覆冰厚度/mm等效密度/(103 kg·m-3)
    44.274 0
    85.534 0
    127.121 9
    169.037 6
    2011.281 3
    Table 4. Equivalent densities of conductor with different icing thicknesses
    阶数覆冰厚度/mm
    48121620
    f/Hz10.255 260.249 400.243 290.237 220.231 37
    20.509 230.497 410.485 070.472 820.460 99
    30.510 370.498 630.486 390.474 250.462 52
    40.578 070.543 900.512 970.486 040.462 86
    50.765 540.747 930.729 570.711 350.693 76
    60.809 070.782 500.757 920.735 340.714 61
    Table 5. Natural frequencies of overhead conductors with different icing thicknesses under initial horizontal tension of 10 000 N
    性能指标最小值典型值最大值
    监测距离/km0.16080
    测频范围/Hz0.11010 000
    空间分辨率/m41050
    空间定位精度/m±3.5
    Table 6. Performance parameters of Ada‑5032E
    涂胶层数覆冰指数nn-1/2f/Hz
    0112.267
    120.7072.067
    230.5771.833
    340.51.667
    450.4471.567
    560.4081.467
    670.3781.367
    780.353 61.267
    Table 7. Icing index and reciprocal of its square root
    Fei XIONG, Zhenhua XING, Yixin ZHANG, Dao ZHANG, Yaze CHEN, Xing FANG, Xuping ZHANG, Feng WANG. Φ‑OTDR‑based On‑line Monitoring Method for Overhead Transmission Line Icing[J]. Optoelectronic Technology, 2022, 42(2): 81
    Download Citation