[1] Wu W H, Zhang L, He B B et al. Current status of research on computer simulation of selective laser melting additive manufacturing process[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 52, 693-697(2016).
[2] Yang Y Q, Luo Z Y, Su X B et al. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J]. Chinese Journal of Lasers, 38, 0103001(2011).
[3] Zhang X B, Dang X A, Yang L J. Study on balling phenomena in selective laser melting[J]. Laser & Optoelectronics Progress, 51, 061401(2014).
[4] Wang P, Huang Z H, Qi W J et al[J]. Effect of the 3D printing process parameters based on SLM technology on the structural defect of 316 stainless steel Welding Digest of Machinery Manufacturing, 2016, 2-7.
[5] Chen J, Lin X, Wang T et al. The hot cracking mechanism of 316L stainless steel cladding in rapid laser forming process[J]. Rare Metal Materials and Engineering, 32, 183-186(2003).
[6] Zhang J, Li S, Wei Q S et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting[J]. Chinese Journal of Rare Metals, 39, 961-966(2015).
[7] Zhang S, Gui R Z, Wei Q S et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 49, 21-27(2013).
[8] Liu Y H, Qu W C, Zhu X G et al. Causes analysis on root cracks of TC4 titanium alloy parts formed by laser 3D printing[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 52, 682-685(2016).
[9] Song C H, Yang Y Q, Wang Y D et al. Research on process and property of CoCrMo alloy directly manufactured by selective laser melting[J]. Chinese Journal of Lasers, 41, 0603001(2014).
[10] Wang M Y, Zhu H H, Qi T et al. Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J]. Laser Technology, 40, 219-222(2016).
[11] Gebhardt A, Schmidt F M, Hötter J S et al. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry[J]. Physics Procedia, 5, 543-549(2010). http://www.sciencedirect.com/science/article/pii/S1875389210005080
[12] Jing G Y, Wei K W, Wang Z M et al. Microstructure and mechanical property of S-04 steel by selective laser melting[J]. Laser & Optoelectronics Progress, 53, 111404(2016).
[13] Pan L, Wang L, Wang G. Effect of linear energy density on defects of 316L stainless steel by selective laser melting[J]. Applied Laser, 39, 15-21(2019).
[14] Atzeni E, Iuliano L, Minetola P et al. Proposal of an innovative benchmark for accuracy evaluation of dental crown manufacturing[J]. Computers in Biology and Medicine, 42, 548-555(2012). http://dl.acm.org/citation.cfm?id=2181648
[15] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 253, 8064-8069(2007). http://www.sciencedirect.com/science/article/pii/S0169433207003534
[16] Wang D. Study on the fabrication properties and process of stainless steel parts by selective laser melting[D]. Guangzhou: South China University of Technology(2011).
[17] Li R D. Research on the key basic issues in selective laser melting of metallic powder[D]. Wuhan: Huazhong University of Science and Technology(2010).
[18] Man D H, Wang L F. Weldhot cracking causes and preventive measures of austenitic stainless steel[J]. Hot Working Technology, 41, 181-184(2012).
[19] Chen R, Yu G, He X L et al. Effect of sulfur diffusion in 38MnVS6 steel on morphology and microstructure of laser cladding layers[J]. Chinese Journal of Lasers, 45, 0602005(2018).
[20] Zhu H H, Liao H L. Research status of selective laser melting of high strength aluminum alloy[J]. Laser & Optoelectronics Progress, 55, 011402(2018).
[21] Wu W H, Yang Y Q, Wang H W et al. Research on direct rapid manufacturing of 316L fine metal part using fiber laser[J]. Laser Technology, 33, 486-489(2009).