[1] Eickhoff W, Ulrich R. Optical frequency-domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 39, 693-695(1981).
[2] Wang Y, Jin B Q, Wang Y C et al. Real-time distributed vibration monitoring system using Φ-OTDR[J]. IEEE Sensors Journal, 17, 1333-1341(2017).
[3] Liu X, Jin B Q, Bai Q et al. Distributed fiber-optic sensors for vibration detection[J]. Sensors, 16, 1164(2016).
[4] Whitbread T W, Wassef W S, Allen P M et al. Profile dependence and measurement of absolute Raman scattering cross-section in optical fibres[J]. Electronics Letters, 25, 1502-1503(1989).
[5] Wang L, Zhou B, Shu C et al. Distributed temperature sensing using stimulated-brillouin-scattering-based slow light[J]. IEEE Photonics Journal, 5, 6801808(2013).
[6] Du Y, Liu T G, Ding Z Y et al. Cryogenic temperature measurement using Rayleigh backscattering spectra shift by OFDR[J]. IEEE Photonics Technology Letters, 26, 1150-1153(2014).
[7] Yuksel K, Wuilpart M, Mégret P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer[J]. Optics Express, 17, 5845-5851(2009).
[8] Boukari O, Hassine L, Bouchriha H et al. Study of dynamic chirp in direct modulated DFB laser for C-OFDR application[J]. Optics Communications, 283, 2214-2223(2010).
[9] Boukari O, Hassine L, Latry O et al. Characterization of the chirp in semiconductor laser under modulation[J]. Materials Science and Engineering: C, 28, 671-675(2008).
[10] Deng Z W, Liu Z G, Li B et al. Precision improvement in frequency-scanning interferometry based on suppressing nonlinear optical frequency sweeping[J]. Optical Review, 22, 724-730(2015).
[11] Tkachenko A Y, Lobach I A, Kablukov S I. Coherent optical frequency-domain reflectometer based on a fibre laser with frequency self-scanning[J]. Quantum Electronics, 49, 1121-1126(2019).
[12] Ndiaye C, Hara T, Ito H. Performance of a solid-state frequency-shifted feedback laser in optical ranging[J]. Journal of the European Optical Society: Rapid Publications, 4, 09010(2009).
[13] He Z Y, Kazama T, Koshikiya Y et al. High-reflectivity-resolution coherent optical frequency domain reflectometry using optical frequency comb source and tunable delay line[J]. Optics Express, 19, B764-B769(2011).
[14] Qin J E, Zhang L, Xie W L et al. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source[J]. Optics Express, 27, 19359-19368(2019).
[15] Dong Y, Xie W L, Feng Y X et al. Laser linear sweep frequency technique based on delay self-heterodyne optical phase locking and its application[J]. Acta Optica Sinica, 41, 1306003(2021).
[16] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 11, 1377-1384(1993).
[17] Soller B J, Gifford D K, Wolfe M S et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 13, 666-674(2005).
[18] Iiyama K, Yasuda M, Takamiya S. Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer[J]. IEICE TRANSACTIONS on Electronics, E89-C, 823-829(2006).
[19] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry[J]. Optics Express, 16, 13139-13149(2008).
[20] Feng B W, Liu K, Liu T G et al. Improving OFDR spatial resolution by reducing external clock sampling error[J]. Optics Communications, 363, 74-79(2016).
[21] Zhao S Y, Cui J W, Tan J B. Nonlinearity correction in OFDR system using a zero-crossing detection-based clock and self-reference[J]. Sensors, 19, 3660(2019).
[22] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 44, 7630-7634(2005).
[23] Song J, Li W H, Lu P et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 6, 6801408(2014).
[24] Xing J J, Zhang Y, Wang F et al. A method based on time-scale factor for correcting the nonlinear frequency sweeping in an OFDR system[J]. IEEE Photonics Journal, 11, 7101808(2019).
[25] Ding Z Y, Liu T G, Meng Z et al. Note: improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform[J]. The Review of Scientific Instruments, 83, 066110(2012).
[26] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency-domain reflectometry[J]. IEEE Journal of Quantum Electronics, 45, 594-602(2009).
[27] Ito F, Fan X Y, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation[J]. Journal of Lightwave Technology, 30, 1015-1024(2012).
[28] Meta A, Hoogeboom P, Ligthart L P. Signal processing for FMCW SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 45, 3519-3532(2007).
[29] Ding Z Y, Yao X S, Liu T G et al. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter[J]. Optics Express, 21, 3826-3834(2013).
[30] Ding Z Y, Du Y, Liu T G et al. Long-range high spatial resolution optical frequency-domain reflectometry based on optimized deskew filter method[J]. Proceedings of SPIE, 9274, 927407(2014).
[31] Du Y, Liu T G, Ding Z Y et al. Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR[J]. IEEE Photonics Journal, 6, 7902811(2014).
[32] Arbel D, Eyal A. Dynamic optical frequency domain reflectometry[J]. Optics Express, 22, 8823-8830(2014).
[33] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 23, 25988-25995(2015).
[34] Dai J P, Qiu J B, Liu H R et al. High spatial resolution TGD-OFDR based on internally modulated DFB laser[J]. Acta Optica Sinica, 43, 0728001(2023).
[35] Wang B, Fan X Y, Wang S et al. Laser phase noise compensation in long-range OFDR by using an optical fiber delay loop[J]. Optics Communications, 365, 220-224(2016).
[36] Song M P, Zhuang S W, Wang Y X et al. Nonlinear phase compensated OFDR based on Match Fourier Transform algorithm[J]. Journal of Physics: Conference Series, 1607, 012110(2020).
[37] Fang Z, Liang C S, Xu S W et al. Spatial resolution enhancement of OFDR sensing system using phase-domain-interpolation resampling method[J]. IEEE Sensors Journal, 22, 3202-3210(2022).
[38] Koshikiya Y, Fan X Y, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 26, 3287-3294(2008).
[39] Li J X, Du J B, Wang S et al. Improving the spatial resolution of an OFDR based on recirculating frequency shifter[J]. IEEE Photonics Journal, 7, 6901310(2015).
[40] Sun L, Du J B, Li L et al. High order SSB modulation and its application for advanced optical comb generation based on RFS[J]. Optics Communications, 354, 380-385(2015).
[41] Xu D, Du J B, Fan X Y et al. 10-times broadened fast optical frequency sweeping for high spatial resolution OFDR[C], W3D.2(2014).
[42] Xu D, Du J B, Fan X Y et al. High spatial resolution OFDR based on broadened optical frequency sweeping by four-wave-mixing[J]. Proceedings of SPIE, 9157, 91576J(2014).
[43] Hiramatsu S, Iwashita K. A novel phase-noise cancelled optical frequency domain reflectometry using modulation sidebands[C], 292-295(2011).
[44] Badar M, Hino T, Iwashita K. Phase noise cancelled OFDR with cm-level spatial resolution using phase diversity[J]. IEEE Photonics Technology Letters, 26, 858-861(2014).
[45] Badar M, Kobayashi H, Iwashita K. Chromatic dispersion measurement with double sideband phase noise canceled OFDR[J]. Optics Communications, 356, 350-355(2015).
[46] Badar M, Kobayashi H, Iwashita K. Spatial resolution improvement in OFDR using four wave mixing and DSB-SC modulation[J]. IEEE Photonics Technology Letters, 28, 1680-1683(2016).
[47] Wang B, Fan X Y, Wang S A et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 25, 3514-3524(2017).
[48] Feng K P, Cui J W, Dang H et al. Investigation of a signal demodulation method based on wavelet transformation for OFDR to enhance its distributed sensing performance[J]. Sensors, 19, 2850(2019).
[49] Guo H H, Hua P D, Ding Z Y et al. Elimination of side lobe ghost peak using Wiener deconvolution filter in OFDR[J]. Journal of Lightwave Technology, 40, 7208-7218(2022).
[50] Kim M J, Kim Y H, Jung E J et al. Simulation result for dynamic range extension in coherent optical frequency domain reflectometry[C], 107-108(2014).
[51] Kim Y, Kim M J, Rho B S et al. Measurement range enhancement of Rayleigh-based optical frequency domain reflectometry with bidirectional determination[J]. IEEE Photonics Journal, 9, 7106308(2017).
[52] Gabai H, Botsev Y, Hahami M et al. Optical frequency domain reflectometry at maximum update rate using I/Q detection[J]. Optics Letters, 40, 1725-1728(2015).
[53] Lü M X, Li X W. Distributed multi-core fiber vector sensing based on in-phase and quadrature modulated optical frequency domain reflectors[J]. Laser & Optoelectronics Progress, 60, 2306005(2023).
[54] Ding Z Y, Yao X S, Liu T G et al. Long measurement range OFDR beyond laser coherence length[J]. IEEE Photonics Technology Letters, 25, 202-205(2013).
[55] Baker C, Lu Y, Song J et al. Incoherent optical frequency domain reflectometry based on a Kerr phase-interrogator[J]. Optics Express, 22, 15370-15375(2014).
[56] Shao C, Yin G L, Lü L et al. OFDR with local spectrum matching method for optical fiber shape sensing[J]. Applied Physics Express, 12, 082010(2019).
[57] Luo M M, Liu J F, Tang C J et al. 0.5 mm spatial resolution distributed fiber temperature and strain sensor with position-deviation compensation based on OFDR[J]. Optics Express, 27, 35823-35829(2019).
[58] Cheng Y Y, Luo M M, Liu J F et al. Numerical analysis and recursive compensation of position deviation for a sub-millimeter resolution OFDR[J]. Sensors, 20, 5540(2020).
[59] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).
[60] Zhou D P, Qin Z G, Li W H et al. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry[J]. Optics Express, 20, 13138-13145(2012).
[61] Ding Z Y, Yao X S, Liu T G et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals[J]. Optics Express, 20, 28319-28329(2012).
[62] Li H, Liu Q W, Chen D A et al. High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression[J]. Optics Letters, 45, 563-566(2020).
[63] Qu S, Qin Z G, Xu Y P et al. Distributed fiber vibration sensing with single-shot measurement and moving time-gating method[J]. Optics Communications, 474, 126053(2020).
[64] Zhao Y D, Wang M G, Zhang J et al. Distributed optical fiber vibration sensing system with high spatial resolution and large bandwidth[J]. Acta Optica Sinica, 42, 1906004(2022).
[65] Duncan R G, Froggatt M E, Kreger S T et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 6530, 65301S(2007).
[66] Parent F, Loranger S, Mandal K K et al. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers[J]. Biomedical Optics Express, 8, 2210-2221(2017).
[67] Schenato L S, Aneesh R A, Palmieri L P et al. Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring[J]. Optics & Laser Technology, 82, 57-62(2016).
[68] Du Y, Jothibasu S, Zhuang Y Y et al. Rayleigh backscattering based macrobending single mode fiber for distributed refractive index sensing[J]. Sensors and Actuators B: Chemical, 248, 346-350(2017).
[69] Faustov A V, Gusarov A V, Mégret P et al. The use of optical frequency-domain reflectometry in remote distributed measurements of the γ-radiation dose[J]. Technical Physics Letters, 41, 414-417(2015).