• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1700006 (2023)
Naijun Cheng1,2,3,4, Weifan Li2,3,4, and Feng Qi1,2,3,4,*
Author Affiliations
  • 1School of Electronic Information Engineering, Shenyang Aerospace University, Shenyang 110136, Liaoning , China
  • 2Key Laboratory of Opto-Electronic Information Processing, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • 3Key Laboratory of Liaoning Province in Terahertz Imaging and Sensing, Shenyang 110169, Liaoning , China
  • 4Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • show less
    DOI: 10.3788/LOP220922 Cite this Article Set citation alerts
    Naijun Cheng, Weifan Li, Feng Qi. Progress of Mid-Infrared Laser[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700006 Copy Citation Text show less
    Structure diagram of combustion-driven continuous wave HF/DF chemical laser[6]
    Fig. 1. Structure diagram of combustion-driven continuous wave HF/DF chemical laser[6]
    System composition of an electrically excited chemical laser[6]
    Fig. 2. System composition of an electrically excited chemical laser[6]
    HBr laser output spectrum and laser output power curve[10]
    Fig. 3. HBr laser output spectrum and laser output power curve[10]
    Diagram of fiber gas laser based on population inversion[16]
    Fig. 4. Diagram of fiber gas laser based on population inversion[16]
    Single-pass configuration experiment of fiber acetylene gas CW laser output[20]. (a) Diagram of experimental setup; (b) output laser power as a function of absorbed pump powers at different pressures
    Fig. 5. Single-pass configuration experiment of fiber acetylene gas CW laser output[20]. (a) Diagram of experimental setup; (b) output laser power as a function of absorbed pump powers at different pressures
    Experiment of OPO pumping CO2-filled silver plating capillary[21]. (a) Diagram of experimental setup; (b) output spectrum and energy level transition principle
    Fig. 6. Experiment of OPO pumping CO2-filled silver plating capillary[21]. (a) Diagram of experimental setup; (b) output spectrum and energy level transition principle
    Output characteristics of fiber acetylene gas laser[24]. (a) Laser output spectra under different signal powers at 300 Pa pressure; (b) signal power versus pump power at 300 Pa pressure with output light field shown in inset
    Fig. 7. Output characteristics of fiber acetylene gas laser[24]. (a) Laser output spectra under different signal powers at 300 Pa pressure; (b) signal power versus pump power at 300 Pa pressure with output light field shown in inset
    Schematic diagrams of energy level transitions of Tm3+, Ho3+ and Er3+(from left to right)[29]
    Fig. 8. Schematic diagrams of energy level transitions of Tm3+, Ho3+ and Er3+(from left to right)[29]
    Overall experimental scheme[36]. (a) Energy level diagram of GSA and ESA dual-wavelength pumped scheme; (b) experimental arrangement for GSA and ESA dual-wavelength pumped Tm3+∶YAP laser
    Fig. 9. Overall experimental scheme[36]. (a) Energy level diagram of GSA and ESA dual-wavelength pumped scheme; (b) experimental arrangement for GSA and ESA dual-wavelength pumped Tm3+∶YAP laser
    Configuration of tunable multi-wavelength Ho3+ doped fiber laser[49]
    Fig. 10. Configuration of tunable multi-wavelength Ho3+ doped fiber laser[49]
    Diagrams of side-pumped Er3+∶YSGG slab laser; (a) Top view; (b) side view[52]
    Fig. 11. Diagrams of side-pumped Er3+∶YSGG slab laser; (a) Top view; (b) side view[52]
    Schematic diagram of 140 W Cr2+∶ZnSe laser system[67]
    Fig. 12. Schematic diagram of 140 W Cr2+∶ZnSe laser system[67]
    Joule level Fe2+∶ZnSe mid-IR laser pumped by Er3+∶YAG lasers[69]
    Fig. 13. Joule level Fe2+∶ZnSe mid-IR laser pumped by Er3+∶YAG lasers[69]
    30.6 mJ, Fe2+∶ZnSe mid-IR laser pumped by HF laser operating at room temperature[70]
    Fig. 14. 30.6 mJ, Fe2+∶ZnSe mid-IR laser pumped by HF laser operating at room temperature[70]
    Schematic diagram of band structure of quantum cascade laser
    Fig. 15. Schematic diagram of band structure of quantum cascade laser
    Schematic diagram of experimental apparatus for polarization beam combination[86]
    Fig. 16. Schematic diagram of experimental apparatus for polarization beam combination[86]
    Schematic diagram of conversion process under several nonlinear frequencies[87]
    Fig. 17. Schematic diagram of conversion process under several nonlinear frequencies[87]
    Schematic diagram of violet jade laser pumped AgGaS2 and GaSe MIR-DFG[89]
    Fig. 18. Schematic diagram of violet jade laser pumped AgGaS2 and GaSe MIR-DFG[89]
    Schematic diagram of MIR source based on ps-laser pumped BaGa4Se7 crystal[94]
    Fig. 19. Schematic diagram of MIR source based on ps-laser pumped BaGa4Se7 crystal[94]
    Schematic diagram of CW MIR source based on BaGa4Se7-DFG[96]
    Fig. 20. Schematic diagram of CW MIR source based on BaGa4Se7-DFG[96]
    PPLN-OPO structure diagram[100]
    Fig. 21. PPLN-OPO structure diagram[100]
    MgO∶PPLN-OPO experimental apparatus[104]
    Fig. 22. MgO∶PPLN-OPO experimental apparatus[104]
    Experiment of mid-infrared laser source based on ZnGeP2-OPO; (a) Tm3+-doped fiber+Ho3+∶YAG rod pumped ZGP-OPO mid-infrared laser[109]; (b) based on Rb∶PPKTP pumped mid-infrared ZnGeP2-OPO[111]
    Fig. 23. Experiment of mid-infrared laser source based on ZnGeP2-OPO; (a) Tm3+-doped fiber+Ho3+∶YAG rod pumped ZGP-OPO mid-infrared laser[109]; (b) based on Rb∶PPKTP pumped mid-infrared ZnGeP2-OPO[111]
    Pump sourcePump wavelength /nmGas gain mediumLaser wavelength /μmMaximum laser energy or powerEfficiency /%
    OPO1521C2H23.12, 3.166 nJ1
    OPO1521C2H23.12, 3.16600 nJ27
    OPA1532.8C2H23.11, 3.17550 nJ20
    OPA1530C2H23.11, 3.171.41 μJ20
    Diode laser1530C2H23.12, 3.160.8 nJ30
    Diode laser1530C2H23.08-3.182.5 mW6.7
    Diode laser1530C2H23.12, 3.161.12 W33.2
    Diode laser1530-1535C2H23.09-3.210.6 μJ16
    0.77 W(CW)13
    OPO2002.5CO24.30, 4.37100 μJ20
    TDFA2000.6CO24.30, 4.3980 mW19.3
    OPA1541.3HCN3.09, 3.1556 nJ0.02
    Nd∶Vanadate532I21.31, 1.338 mW4
    OPO1517N2O4.59, 4.66150 nJ9
    ElectrodesHe∶Xe(5∶1)3.11, 3.37, 3.51
    Table 1. Research progress of HCF based on population inversion [16]
    Gain materialTuning range /μmTuning width /nm
    Tm3+∶YAG1.87-2.16290
    Tm3+∶YSGG1.84-2.14300
    Tm3+∶YALO31.93-2.0070
    Tm3+∶Y2O31.93-2.09160
    Tm3+∶Sc2O31.93-2.16230
    Tm3+∶Silica fiber1.86-2.09230
    Tm3+∶YLE1.91-2.07160
    Tm3+∶GdVO41.86-1.99130
    Tm3+∶Silica fiber1.72-1.97250
    Tm3+∶BaY2F81.78-2.03245
    Table 2. Tuning range and width of Tm3+ doped laser with different substrates[30]
    MaterialWavelength /μmOutput powerYearReference
    Tm3+∶YAP1.988344 mW201032
    Tm3+∶YAG2.0138 mW201233
    Tm3+∶LSO2.0540.65 W201334
    Tm3+∶YAG2.07267 W201435
    Table 3. Research progress of Tm3+ solid-state laser
    CrystalTransmittance rang /μmEnergy gap /eVNonlinear coefficient /(pm·V-1Damage threshold /(MW·cm-2
    AgGaS20.47-132.76d36=12.6@10.634(1.06 μm,15 ns)
    ZnGeP20.74-122.00d36=75@10.6100(2.1 μm,10 ns)
    GaSe0.62-201.72d22=54.4@10.630(1.06 μm,10 ns)
    CdSe0.75-252.20d31=18@10.650(2.36 μm,35 ns)
    BaGa4S70.35-13.73.54d31=5.1@2.26264(1.06 μm,14 ns)
    BaGa4Se70.47-182.64d23=14.2@1.06100(1.06 μm,14 ns)
    QPM-GaAs0.85-18.51.42d14=86@10.6200(1.06 μm,5 ns)
    Table 4. Optical properties of some infrared nonlinear crystals[87]