• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1700006 (2023)
Naijun Cheng1,2,3,4, Weifan Li2,3,4, and Feng Qi1,2,3,4,*
Author Affiliations
  • 1School of Electronic Information Engineering, Shenyang Aerospace University, Shenyang 110136, Liaoning , China
  • 2Key Laboratory of Opto-Electronic Information Processing, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • 3Key Laboratory of Liaoning Province in Terahertz Imaging and Sensing, Shenyang 110169, Liaoning , China
  • 4Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • show less
    DOI: 10.3788/LOP220922 Cite this Article Set citation alerts
    Naijun Cheng, Weifan Li, Feng Qi. Progress of Mid-Infrared Laser[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700006 Copy Citation Text show less
    References

    [1] Ebrahim-Zadeh M, Sorokina I T[M]. Mid-infrared coherent sources and applications(2008).

    [2] Zandonella C. Terahertz imaging: T-ray specs[J]. Nature, 424, 721-722(2003).

    [3] Shen D Y, Fan D Y[M]. Mid-infrared lasers(2015).

    [4] Bashkin A S, Gurov L V, Katorgin B I et al. On the possibility of simultaneous emission of an autonomous cw HF-DF chemical laser in two spectral ranges[J]. Quantum Electronics, 38, 429-435(2008).

    [5] Lowenthal D D, Hamilton C E, Tidwell S C et al. 20-watt output power Tm: YAG laser driver for HBr mid-IR laser[J]. Proceedings of SPIE, 2502, 483-489(1995).

    [6] Guo R H, Shi L, Wang S W et al. Development review of HF/DF chemical lasers[J]. OME Information, 27, 30-35(2010).

    [7] Fradin D W, Chenausky P P, Freiberg R J. A recirculating, self-contained DF/HF pulsed laser[J]. IEEE Journal of Quantum Electronics, 11, 631-633(1975).

    [8] Wang H Y. Study of discharge driven continuous wave infrared multi-band chemical laser[D](2006).

    [9] Huang C, Huang K, Yi A P et al. 200 W mid-infrared HF chemical laser with repetition rate[J]. Chinese Journal of Lasers, 46, 0801005(2019).

    [10] Wang Z Q, Duo L P, Zhou D J et al. Continuous wave kilowatt combustion driven HBr chemical laser[J]. Chinese Journal of Lasers, 47, 1216004(2020).

    [11] Chang T Y, Wood O R. Optically pumped atmospheric-pressure CO2 laser[J]. Applied Physics Letters, 21, 19-21(1972).

    [12] Chen Y B, Wang H Y, Lu Q S et al. Optically pumped mid-infrared gas lasers[J]. Laser & Optoelectronics Progress, 52, 010005(2015).

    [13] Kletecka C S, Campbell N, Jones C R et al. Cascade lasing of molecular HBr in the four micron region pumped by a Nd: YAG laser[J]. IEEE Journal of Quantum Electronics, 40, 1471-1477(2004).

    [14] Koen W, Jacobs C, Bollig C et al. Optically pumped tunable HBr laser in the mid-infrared region[J]. Optics Letters, 39, 3563-3566(2014).

    [15] Wang Z F, Huang W, Li Z X et al. Progress and prospects of fiber gas laser sources (‍Ⅰ): based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 0401008(2021).

    [16] Wang Z F, Zhou Z Y, Cui Y L et al. Research progress and prospect of fiber gas laser sources (Ⅱ): based on population inversion[J]. Chinese Journal of Lasers, 48, 0401009(2021).

    [17] Cui Y L, Zhou Z Y, Huang W et al. Anti-resonant hollow-core fibers based 4.3-μm carbon dioxide lasers[J]. Acta Optica Sinica, 39, 1214002(2019).

    [18] Jones A M, Nampoothiri A V V, Ratanavis A et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion[J]. Optics Express, 19, 2309-2316(2011).

    [19] Hassan M R A, Yu F, Wadsworth W J et al. Cavity-based mid-IR fiber gas laser pumped by a diode laser[J]. Optica, 3, 218-221(2016).

    [20] Xu M R, Yu F, Knight J. Mid-infrared 1 W hollow-core fiber gas laser source[J]. Optics Letters, 42, 4055-4058(2017).

    [21] Nampoothiri A V V, Jones A M, Fourcade-Dutin C et al. Hollow-core optical fiber gas lasers (HOFGLAS): a review[J]. Optical Materials Express, 2, 948-961(2012).

    [22] Cui Y L, Huang W, Wang Z F et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 6, 951-954(2019).

    [23] Zhou Z Y, Li H, Cui Y L et al. Optically pumped 4 μm CW HBr gas laser based on hollow-core fiber[J]. Acta Optica Sinica, 40, 1614001(2020).

    [24] Huang W, Zhou Z Y, Cui Y L et al. 4.5 W 3.1 μm mid-infrared fiber gas laser[J]. Chinese Journal of Lasers, 49, 0101024(2022).

    [25] Jones A M, Fourcade-Dutin C, Mao C et al. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN- filled hollow fiber lasers[J], 8237, 82373Y(2012).

    [26] Aghbolagh F B A, Nampoothiri V, Debord B et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm[J]. Optics Letters, 44, 383-386(2019).

    [27] Nampoothiri A V V, Debord B, Alharbi M et al. CW hollow-core optically pumped I₂ fiber gas laser[J]. Optics Letters, 40, 605-608(2015).

    [28] Koen W, Jacobs C, Bollig C et al. Optically pumped tunable HBr laser in the mid-infrared region[J]. Optics Letters, 39, 3563-3566(2014).

    [29] Chen C S, Zhao X Y, Xu L et al. Evolution of mid-infrared optical source[J]. Infrared Technology, 37, 625-634(2015).

    [30] Godard A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 8, 1100-1128(2007).

    [31] Ren X K, Li C B, Wang D D et al. High power Tm-doped solid laser[J]. Journal of Shenzhen University Science and Engineering, 32, 411-416(2015).

    [32] Li J, Yang S H, Zhang H Y et al. Diode-pumped room temperature single frequency Tm∶YAP laser[J]. Laser Physics Letters, 7, 203-205(2010).

    [33] Wang Q, Teng H, Zou Y W et al. Graphene on SiC as a Q-switcher for a 2 μm laser[J]. Optics Letters, 37, 395-397(2012).

    [34] Feng T L, Zhao S Z, Yang K J et al. Diode-pumped continuous wave tunable and graphene Q-switched Tm∶LSO lasers[J]. Optics Express, 21, 24665-24673(2013).

    [35] Niu Y X, Wang C L, Liu W W et al. Theoretical model predictions and experimental results for a wavelength switchable Tm∶YAG laser[J]. Applied Optics, 53, 4359-4362(2014).

    [36] Wang F, Huang H T, Bao Y S et al. GSA and ESA dual-wavelength pumped 2.3 μm Tm: YAP lasers[J]. Chinese Journal of Lasers, 49, 0101022(2022).

    [37] Hanna D C, Perry I R, Lincoln J R et al. A 1-Watt thulium-doped cw fibre laser operating at 2 μm[J]. Optics Communications, 80, 52-56(1990).

    [38] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all glass Tm∶fiber laser[J]. Proceedings of SPIE, 7580, 758016(2010).

    [39] Anderson B M, Solomon J, Flores A. 1.1 kW, beam-combinable thulium doped all-fiber amplifier[J]. Proceedings of SPIE, 11665, 116650B(2021).

    [40] Creeden D, Johnson B R, Setzler S D et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency[J]. Optics Letters, 39, 470-473(2014).

    [41] Creeden D, Johnson B R, Rines G A et al. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations[J]. Optics Express, 22, 29067-29080(2014).

    [42] Wang Y, Yang J L, Huang C Y et al. High power tandem-pumped thulium-doped fiber laser[J]. Optics Express, 23, 2991-2998(2015).

    [43] Tao M M, Ye X S, Ye J F et al. Modeling In-band pumped kW level high-power Tm-doped fiber lasers via simulations[J]. Chinese Journal of Lasers, 49, 0101019(2022).

    [44] Shen Y J, Yao B Q, Duan X M et al. 103 W in-band dual-end-pumped Ho: YAG laser[J]. Optics Letters, 37, 3558-3560(2012).

    [45] Duan X M, Yao B, Wang Y. 146.4-W end-pumped slab Ho∶YAG laser with two crystals[J]. Quantum Electronics, 48, 691-694(2018).

    [46] Tang J W, Li E H, Wang F et al. High power Ho: YAP laser with 107 W of output power at 2117 nm[J]. IEEE Photonics Journal, 12, 1501107(2020).

    [47] Wang Q C, Long Q L, Gao Y et al. High-efficiency Ho∶YLF slab laser with 125 W continuous-wave output power[J]. Applied Optics, 60, 8046-8049(2021).

    [48] Chen H W, Shen Y L, Tao M M et al. Mid-infrared Ho-doped fiber laser pumped by 1150 nm fiber laser[J]. Chinese Journal of Lasers, 44, 0801009(2017).

    [49] Yu X M, Ding Y F, Ma W Z et al. Tunable multi-wavelength holmium-doped fiber laser operating at 2.1 μm[J]. Journal of Applied Optics, 40, 500-504(2019).

    [50] Shen D Y, Sahu J K, Clarkson W A. Highly efficient Er, Yb-doped fiber laser with 188 W free-running and >100 W tunable output power[J]. Optics Express, 13, 4916-4921(2005).

    [51] Jebali M A, Maran J N, LaRochelle S. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping[J]. Optics Letters, 39, 3974-3977(2014).

    [52] Shen B J, Kang H X, Chen P et al. Performance of continuous-wave laser-diode side-pumped Er∶YSGG slab lasers at 2.79 μm[J]. Applied Physics B, 121, 511-515(2015).

    [53] Xu Z, Wang P Y, Liu W F et al. 2.94 μm diode side pumped Er∶YAG laser[J]. Proceedings of SPIE, 10254, 102540F(2017).

    [54] Sanamyan T. Efficient cryogenic mid-IR and eye-safe Er∶YAG laser[J]. Journal of the Optical Society of America B, 33, D1-D6(2016).

    [55] Messner M, Heinrich A, Hagen C et al. High brightness diode pumped Er∶YAG laser system at 2.94 µm with nearly 1 kW peak power[J]. Proceedings of SPIE, 9726, 972602(2016).

    [56] Fang C, Wang S B, Hui Y L et al. Progresson erbium-doped mid-infrared laser[J]. Laser & Optoelectronics Progress, 56, 180002(2019).

    [57] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).

    [58] Shen Y L, Huang K, Zhou S Q et al. 10 W-level high efficiency single-mode mid-infrared 2.8 μm fiber laser[J]. Chinese Journal of Lasers, 42, 0502008(2015).

    [59] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).

    [60] Gu H A, Qin Z P, Xie G Q et al. Generation of 131 fs mode-locked pulses from 2.8 μm Er∶ZBLAN fiber laser[J]. Chinese Optics Letters, 18, 031402(2020).

    [61] Shen Y L, Wang Y S, Zhu F et al. 200 µJ, 13 ns Er∶ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator[J]. Optics Letters, 46, 1141-1144(2021).

    [62] Luo Y Z, Yu S Q, Yin M et al. Research progress on transition metal ions doped Ⅱ-Ⅵ group mid-infrared laser ceramics[J]. Journal of Synthetic Crystals, 50, 947-958(2021).

    [63] Moskalev I S, Fedorov V V, Mirov S B. Tunable, single-frequency, and multi-watt continuous-wave Cr2+: ZnSe lasers[J]. Optics Express, 16, 4145-4153(2008).

    [64] Wang Y P, Wang F, Zhao D X. All solid state Mid-IR laser of Cr2+∶ZnSe[J]. Chinese Optics, 9, 563-568(2016).

    [65] Mirov S B, Fedorov V V, Graham K et al. Erbium fiber laser-pumped continuous-wave microchip Cr2+∶ZnS and Cr2+∶ZnSe lasers[J]. Optics Letters, 27, 909-911(2002).

    [66] Sorokin E, Sorokina I T, Mirov M S et al. Ultrabroad continuous-wave tuning of ceramic Cr∶ZnSe and Cr∶ZnS lasers[C], AMC2(2010).

    [67] Moskalev I S, Mirov S, Mirov M et al. 140 W Cr: ZnSe laser system[J]. Optics Express, 24, 21090-21104(2016).

    [68] Adams J J, Bibeau C, Page R H et al. 4.0-4.5-µm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 24, 1720-1722(1999).

    [69] Frolov M P, Korostelin Y V, Kozlovsky V I et al. Study of a 2-J pulsed Fe∶ZnSe 4-μm laser[J]. Laser Physics Letters, 10, 125001(2013).

    [70] Velikanov S D, Danilov V P, Zakharov N G et al. Fe2+∶ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature[J]. Quantum Electronics, 44, 141-144(2014).

    [71] Velikanov S D, Gavrishchuk E M, Zaretsky N A et al. Repetitively pulsed Fe∶ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element[J]. Quantum Electronics, 47, 303-307(2017).

    [72] Frolov M P, Korostelin Y V, Kozlovsky V I et al. Efficient 10-J pulsed Fe∶ZnSe laser at 4100 nm[C], R1-10(2016).

    [73] Martyshkin D V, Fedorov V V, Mirov M et al. High power (9.2 W) CW 4.15 µm Fe∶ZnSe laser[C], STh1L.6(2017).

    [74] Uehara H, Tsunai T, Han B Y et al. 40 kHz, 20 ns acousto-optically Q-switched 4 µm Fe∶ZnSe laser pumped by a fluoride fiber laser[J]. Optics Letters, 45, 2788-2791(2020).

    [75] Kazarinov R F, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice[J]. Soviet Physics Semiconductors, 5, 707-709(1971).

    [76] Faist J, Capasso F, Sivco D L et al. Quantum cascade laser[J]. Science, 264, 553-556(1994).

    [77] Faist J, Capasso F, Sirtori C et al. High power mid-infrared (λ~5 μm) quantum cascade lasers operating above room temperature[J]. Applied Physics Letters, 68, 3680-3682(1996).

    [78] Colombelli R, Capasso F, Gmachl C et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths[J]. Applied Physics Letters, 78, 2620-2622(2001).

    [79] Beck M, Hofstetter D, Aellen T et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 295, 301-305(2002).

    [80] Colombelli R, Srinivasan K, Troccoli M et al. Quantum cascade surface-emitting photonic crystal laser[J]. Science, 302, 1374-1377(2003).

    [81] Maulini R, Mohan A R, Giovannini M et al. External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade[J]. Applied Physics Letters, 88, 201113(2006).

    [82] Xu G Y, Colombelli R, Braive R et al. Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators[J]. Optics Express, 18, 11979-11989(2010).

    [83] Blanchard R, Mansuripur T S, Gökden B et al. High-power low-divergence tapered quantum cascade lasers with plasmonic collimators[J]. Applied Physics Letters, 102, 191114(2013).

    [84] Zhao G. Frequency stabilization of a quantum cascade laser by weak resonant feedback from a Fabry-Perot cavity[J]. Optics Letters, 46, 3057-3060(2021).

    [85] Song S F, Xing W R, Liu M. Theory and research advancement of quantum cascade lasers[J]. Laser & Infrared, 43, 972-976(2013).

    [86] Wang K, Cai J, Ding Y et al. Experimental study on polarization beam combining of mid-infrared quantum cascade laser[J]. Infrared and Laser Engineering, 51, 20210679(2022).

    [87] Guo L Y, Ma Y, Qi F et al. Research progress of non-oxide crystals applied in long-wave infrared sources[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 33, 230-241(2021).

    [88] Pine A S. Doppler-limited molecular spectroscopy by difference-frequency mixing[J]. Journal of the Optical Society of America, 64, 1683-1690(1974).

    [89] Okorogu A O, Mirov S B, Lee W et al. Tunable middle infrared downconversion in GaSe and AgGaS2[J]. Optics Communications, 155, 307-312(1998).

    [90] Haidar S, Miyamoto K, Ito H. Generation of continuously tunable, 5-12 µm radiation by difference frequency mixing of output waves of a KTP optical parametric oscillator in a ZnGeP2 crystal[J]. Journal of Physics D: Applied Physics, 37, 3347-3349(2004).

    [91] Finsterbusch K, Bayer A, TunableZacharias H.. narrow-band picosecond radiation in the mid-infrared by difference frequency mixing in GaSe and CdSe[J]. Applied Physics B, 79, 457-462(2004).

    [92] Wang L S, Cao Z S, Wang H et al. A widely tunable (5-12.5 μm) continuous-wave mid-infrared laser spectrometer based on difference frequency generation in AgGaS2[J]. Optics Communications, 284, 358-362(2011).

    [93] Yang F, Yao J Y, Xu H Y et al. High efficiency and high peak power picosecond mid-infrared optical parametric amplifier based on BaGa4Se7 crystal[J]. Optics Letters, 38, 3903-3905(2013).

    [94] Yang F, Yao J Y, Xu H Y et al. Midinfrared optical parametric amplifier with 6.4-11 μm range based on BaGa4Se7[J]. IEEE Photonics Technology Letters, 27, 1100-1103(2015).

    [95] Sun M G, Cao Z S, Yao J Y et al. Continuous-wave difference-frequency generation based on BaGa4Se7 crystal[J]. Optics Express, 27, 4014-4023(2019).

    [96] Hu S W, Wang L, Guo Y W et al. High-conversion-efficiency tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 279-μm laser[J]. Optics Letters, 44, 2201-2203(2019).

    [97] Rahlff C, Tang Y, Sibbett W et al. High-repetition-rate, mid-infrared KTA-OPO at 3.44 μm[C], CWF16(1996).

    [98] Andriukaitis G, Balčiūnas T, Ališauskas S et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier[J]. Optics Letters, 36, 2755-2757(2011).

    [99] Bosenberg W R, Drobshoff A, Alexander J I et al. 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator[J]. Optics Letters, 21, 1336-1338(1996).

    [100] Burr K C, Tang C L, Arbore M A et al. Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate[J]. Optics Letters, 22, 1458-1460(1997).

    [101] Chen D W, Rose T S. Low noise 10 W cw OPO generation near 3 μm with MgO doped PPLN[C], CThQ2(2005).

    [102] Kemlin V, Jegouso D, Debray J et al. Widely tunable optical parametric oscillator in a 5 mm thick 5% MgO: PPLN partial cylinder[J]. Optics Letters, 38, 860-862(2013).

    [103] Liu S D, Wang Z W, Zhang B T et al. Wildly tunable, high-efficiency MgO∶PPLN mid-IR optical parametric oscillator pumped by a Yb-fiber laser[J]. Chinese Physics Letters, 31, 024204(2014).

    [104] Murray R T, Runcorn T H, Guha S et al. High average power parametric wavelength conversion at 3.31-3.48 m in MgO∶PPLN[J]. Optics Express, 25, 6421-6430(2017).

    [105] He Y, Chen F, Wan H H et al. Fiber-laser-pumped high-power mid-infrared optical parametric oscillator based on MgO∶PPLN crystal[J]. High Power Laser and Particle Beams, 34, 031003(2022).

    [106] Hanna D C, Luther-Davies B, Smith R C. Singly resonant proustite parametric oscillator tuned from 1.22 to 8.5 μm[J]. Applied Physics Letters, 22, 440-442(1973).

    [107] Boyko A A, Marchev G M, Petrov V et al. Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 µm[J]. Optics Express, 23, 33460-33465(2015).

    [108] Tyazhev A, Vedenyapin V, Marchev G et al. Singly-resonant optical parametric oscillation based on the wide band-gap mid-IR nonlinear optical crystal LiGaS2[J]. Optical Materials, 35, 1612-1615(2013).

    [109] Hemming A, Richards J, Davidson A et al. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle[J]. Optics Express, 21, 10062-10069(2013).

    [110] Wang L, Xing T L, Hu S W et al. Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%[J]. Optics Express, 25, 3373-3380(2017).

    [111] Qian C P, Yao B Q, Zhao B R et al. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation[J]. Optics Letters, 44, 715-718(2019).

    [112] Yao J Y, Mei D J, Bai L et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic Chemistry, 49, 9212-9216(2010).

    [113] Yuan J H, Li C, Yao B Q et al. High power, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.1 μm Ho∶YAG laser[J]. Optics Express, 24, 6083-6087(2016).

    [114] Zhao B R, Chen Y, Yao B Q et al. High-efficiency, tunable 8-9 μm BaGa4Se7 optical parametric oscillator pumped at 2.1 μm[J]. Optical Materials Express, 8, 3332-3337(2018).

    [115] Kostyukova N Y, Boyko A A, Badikov V et al. Widely tunable in the mid-IR BaGa4Se7 optical parametric oscillator pumped at 1064 nm[J]. Optics Letters, 41, 3667-3670(2016).

    [116] Boyko A A, Kostyukova N Y, Badikov V et al. Intracavity difference-frequency mixing of optical parametric oscillator signal and idler pulses in BaGa4Se7[J]. Applied Optics, 56, 2783-2786(2017).

    [117] Xu W T, Wang Y Y, Xu D G et al. High-pulse-energy mid-infrared optical parametric oscillator based on BaGa4Se7 crystal pumped at 1.064 μm[J]. Applied Physics B, 123, 80(2017).

    [118] He Y X, Xu D G, Yao J Y et al. Intracavity-pumped, mid-infrared tandem optical parametric oscillator based on BaGa4Se7 crystal[J]. IEEE Photonics Journal, 11, 1300109(2019).

    [119] Zhang Y P, Liu Y F, Jia D G. Design of electrically controlled tunable mid infrared laser based on BGSe crystal[J]. Applied Laser, 41, 839-842(2021).