• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 1, 15002 (2022)
Jiale Yong1, Qing Yang2, Jinglan Huo1, Xun Hou1, and Feng Chen1,*
Author Affiliations
  • 1State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
  • 2School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ac466f Cite this Article
    Jiale Yong, Qing Yang, Jinglan Huo, Xun Hou, Feng Chen. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 μm) for bubble/gas manipulation[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 15002 Copy Citation Text show less
    References

    [1] Liu X C, Yang F C, Guo J, Fu J and Guo Z G 2020 New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes Chem. Commun. 56 14757–88

    [2] Tang X, Tian Y, Tian X W, Li W, Han X, Kong T T and Wang L Q 2021 Design of multi-scale textured surfaces for unconventional liquid harnessing Mater. Today 43 62–83

    [3] Su B, Tian Y and Jiang L 2016 Bioinspired interfaces with superwettability: from materials to chemistry J. Am. Chem. Soc. 138 1727–48

    [4] Yong J L, Zhuang J, Bai X, Huo J L, Yang Q, Hou X and Chen F 2021 Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser Nanoscale 13 10414–24

    [5] Lu Z Y et al 2014 Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes Adv. Mater. 26 2683–7

    [6] Lu Z Y, Li Y J, Lei X D, Liu J F and Sun X M 2015 Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes Mater. Horiz. 2 294–8

    [7] Lu Z Y, Sun M, Xu T H, Li Y J, Xu W W, Chang Z, Ding Y, Sun X M and Jiang L 2015 Superaerophobic electrodes for direct hydrazine fuel cells Adv. Mater. 27 2361–6

    [8] Chen X, Wu Y C, Su B, Wang J M, Song Y L and Jiang L 2012 Terminating marine methane bubbles by superhydrophobic sponges Adv. Mater. 24 5884–9

    [9] Yu C M, Cao M Y, Dong Z C, Li K, Yu C L, Wang J M and Jiang L 2016 Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles Adv. Funct. Mater. 26 6830–5

    [10] Zhu S W, Li J W, Cai S, Bian Y C, Chen C, Xu B, Su Y H, Hu Y L, Wu D and Chu J R 2020 Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam ACS Appl. Mater. Interfaces 12 18110–5

    [11] Ma H Y, Cao M Y, Zhang C H, Bei Z L, Li K, Yu C M and Jiang L 2018 Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments Adv. Funct. Mater. 28 1705091

    [12] Yu C M, Cao M Y, Dong Z C, Wang J M, Li K and Jiang L 2016 Spontaneous and directional transportation of gas bubbles on superhydrophobic cones Adv. Funct. Mater. 26 3236–43

    [13] Vorobyev A Y and Guo C L 2013 Direct femtosecond laser surface nano/microstructuring and its applications Laser Photonics Rev. 7 385–407

    [14] Stratakis E et al 2020 Laser engineering of biomimetic surfaces Mater. Sci. Eng. R. 141 100562

    [15] Sugioka K and Cheng Y 2014 Ultrafast lasers-reliable tools for advanced materials processing Light Sci. Appl. 3 e149

    [16] Liu X Q, Bai B F, Chen Q D and Sun H B 2019 Etching-assisted femtosecond laser modification of hard materials Opto Electron. Adv. 2 190021

    [17] Chong T C, Hong M H and Shi L P 2010 Laser precision engineering: from microfabrication to nanoprocessing Laser Photonics Rev. 4 123–43

    [18] Sugioka K and Cheng Y 2014 Femtosecond laser three-dimensional micro- and nanofabrication Appl. Phys. Rev. 1 041303

    [19] Yong J L, Yang Q, Guo C L, Chen F and Hou X 2019 A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation RSC Adv. 9 12470–95

    [20] Chen F, Zhang D S, Yang Q, Yong J L, Du G Q, Si J H, Yun F and Hou X 2013 Bioinspired wetting surface via laser microfabrication ACS Appl. Mater. Interfaces 5 6777–92

    [21] Yong J L, Chen F, Yang Q and Hou X 2015 Femtosecond laser controlled wettability of solid surfaces Soft Matter 11 8897–906

    [22] Yong J L, Chen F, Yang Q, Jiang Z D and Hou X 2018 A review of femtosecond-laser-induced underwater superoleophobic surfaces Adv. Mater. Interfaces 5 1701370

    [23] Stratakis E, Ranella A and Fotakis C 2011 Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications Biomicrofluidics 5 013411

    [24] Pazokian H, Selimis A, Barzin J, Jelvani S, Mollabashi M, Fotakis C and Stratakis E 2012 Tailoring the wetting properties of polymers from highly hydrophilic to superhydrophobic using UV laser pulses J. Micromech. Microeng. 22 035001

    [25] Baldacchini T, Carey J E, Zhou M and Mazur E 2006 Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser Langmuir 22 4917–9

    [26] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis S H and Fotakis C 2008 Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf Adv. Mater. 20 4049–54

    [27] Yong J L, Chen F, Yang Q, Zhang D S, Bian H, Du G Q, Si J H, Meng X W and Xou X 2013 Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays Langmuir 29 3274–9

    [28] Yong J L, Chen F, Yang Q, Zhang D S, Du G Q, Si J H, Yun F and Hou X 2013 Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion J. Phys. Chem. C 117 24907–12

    [29] Yong J L, Yang Q, Chen F, Zhang D S, Farooq U, Du G Q and Hou X 2014 A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces J. Mater. Chem. A 2 5499–507

    [30] Yong J L, Yang Q, Chen F, Zhang D S, Du G Q, Bian H, Si J H, Yun F and Hou X 2014 Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion Appl. Surf. Sci. 288 579–83

    [31] Yong J L, Fang Y, Chen F, Huo J L, Yang Q, Bian H, Du G Q and Hou X 2016 Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions Appl. Surf. Sci. 389 1148–55

    [32] Yu C M, Zhang P P, Wang J M and Jiang L 2017 Superwettability of gas bubbles and its application: from bioinspiration to advanced materials Adv. Mater. 29 1703053

    [33] George J E, Chidangil S and George S D 2017 Recent progress in fabricating superaerophobic and superaerophilic surfaces Adv. Mater. Interfaces 4 1601088

    [34] Tian Y, Su B and Jiang L 2014 Interfacial material system exhibiting superwettability Adv. Mater. 26 6872–97

    [35] Yong J L, Singh S C, Zhan Z B, Chen F and Guo C L 2019 How to obtain six different superwettabilities on a same microstructured pattern: relationship between various superwettabilities in different solid/liquid/gas systems Langmuir 35 921–7

    [36] Zhang D S and Sugioka K 2019 Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids Opto Electron. Adv. 2 190002

    [37] Zhang Y Y, Jiao Y L, Li C Z, Chen C, Li J W, Hu Y L, Wu D and Chu J R 2020 Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications Int. J. Extreme Manuf. 2 032002

    [38] Bai X, Yang Q, Fang Y, Zhang J Z, Yong J L, Hou X and Chen F 2020 Superhydrophobicity-memory surfaces prepared by a femtosecond laser Chem. Eng. J. 383 123143

    [39] Shen M Y, Crouch C H, Carey J E and Mazur E 2004 Femtosecond laser-induced formation of submicrometer spikes on silicon in water Appl. Phys. Lett. 85 5694–6

    [40] Shan C, Chen F, Yang Q, Li Y Y, Bian H, Yong J L and Hou X 2015 High-level integration of three-dimensional microcoils array in fused silica Opt. Lett. 40 4050–3

    [41] Yong J L, Singh S C, Zhan Z B, EIKabbash M, Chen F and Guo C L 2019 Femtosecond-laser-produced underwater “superpolymphobic” nanorippled surfaces: repelling liquid polymers in water for applications of controlling polymer shape and adhesion ACS Appl. Nano Mater. 2 7362–71

    [42] Larmour I A, Bell S E J and Saunders G C 2007 Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition Angew. Chem. 119 1740–2

    [43] Yong J L, Chen F, Li M J, Yang Q, Fang Y, Huo J L and Hou X 2017 Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces J. Mater. Chem. A 5 25249–57

    [44] Yong J L, Chen F, Yang Q, Huo J L and Hou X 2017 Superoleophobic surfaces Chem. Soc. Rev. 46 4168–217

    [45] Cassie A B D and Baxter S 1944 Wettability of porous surfaces Trans. Faraday Soc. 40 546–51

    [46] Wang S and Jiang L 2007 Definition of superhydrophobic states Adv. Mater. 19 3423–4

    [47] Pei C T, Peng Y, Zhang Y, Tian D L, Liu K S and Jiang L 2018 An integrated Janus mesh: underwater bubble antibuoyancy unidirectional penetration ACS Nano 12 5489–94

    [48] Yan S G et al 2018 Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment Appl. Phys. Lett. 113 261602

    [49] Zhang C H, Zhang B, Ma H Y, Li Z, Xiao X, Zhang Y H, Cui X Y, Yu C M, Cao M Y and Jiang L 2018 Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment ACS Nano 12 2048–55

    [50] Liu G L, Zhang C H, Liu M F, Guo Z W, Wang X S, Yu C M and Cao M Y 2020 Smart manipulation of gas bubbles in harsh environments via a fluorinert-infused shape-gradient slippery surface Trans. Tianjin Univ. 26 441–9

    [51] Yong J L, Chen F, Fang Y, Huo J L, Yang Q, Zhang J Z, Bian H and Hou X 2017 Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles ACS Appl. Mater. Interfaces 9 39863–71

    [52] Huo J L, Yong J L, Chen F, Yang Q, Fang Y and Hou X 2019 Trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces Adv. Mater. Interfaces 6 1900262

    [53] Sackmann E K, Fulton A L and Beebe D J 2014 The present and future role of microfluidics in biomedical research Nature 507 181–9

    [54] Shang L R, Cheng Y and Zhao Y J 2017 Emerging droplet microfluidics Chem. Rev. 117 7964–8040

    [55] Zhang J, Yan S, Yuan D, Alici G, Nguyen N T, Warkiani M E and Li W H 2016 Fundamentals and applications of inertial microfluidics: a review Lab Chip 16 10–34

    [56] Long J Y, Fan P X, Jiang D E, Han J P, Lin Y, Cai M Y, Zhang H J and Zhong M L 2016 Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures Adv. Mater. Interfaces 3 1600641

    [57] Yong J L, Chen F, Yang Q, Farooq U and Hou X 2015 Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces J. Mater. Chem. A 3 10703–9

    Jiale Yong, Qing Yang, Jinglan Huo, Xun Hou, Feng Chen. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 μm) for bubble/gas manipulation[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 15002
    Download Citation