[1] Liu X C, Yang F C, Guo J, Fu J and Guo Z G 2020 New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes Chem. Commun. 56 14757–88
[2] Tang X, Tian Y, Tian X W, Li W, Han X, Kong T T and Wang L Q 2021 Design of multi-scale textured surfaces for unconventional liquid harnessing Mater. Today 43 62–83
[3] Su B, Tian Y and Jiang L 2016 Bioinspired interfaces with superwettability: from materials to chemistry J. Am. Chem. Soc. 138 1727–48
[4] Yong J L, Zhuang J, Bai X, Huo J L, Yang Q, Hou X and Chen F 2021 Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser Nanoscale 13 10414–24
[5] Lu Z Y et al 2014 Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes Adv. Mater. 26 2683–7
[6] Lu Z Y, Li Y J, Lei X D, Liu J F and Sun X M 2015 Nanoarray based “superaerophobic” surfaces for gas evolution reaction electrodes Mater. Horiz. 2 294–8
[7] Lu Z Y, Sun M, Xu T H, Li Y J, Xu W W, Chang Z, Ding Y, Sun X M and Jiang L 2015 Superaerophobic electrodes for direct hydrazine fuel cells Adv. Mater. 27 2361–6
[8] Chen X, Wu Y C, Su B, Wang J M, Song Y L and Jiang L 2012 Terminating marine methane bubbles by superhydrophobic sponges Adv. Mater. 24 5884–9
[9] Yu C M, Cao M Y, Dong Z C, Li K, Yu C L, Wang J M and Jiang L 2016 Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles Adv. Funct. Mater. 26 6830–5
[10] Zhu S W, Li J W, Cai S, Bian Y C, Chen C, Xu B, Su Y H, Hu Y L, Wu D and Chu J R 2020 Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam ACS Appl. Mater. Interfaces 12 18110–5
[11] Ma H Y, Cao M Y, Zhang C H, Bei Z L, Li K, Yu C M and Jiang L 2018 Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments Adv. Funct. Mater. 28 1705091
[12] Yu C M, Cao M Y, Dong Z C, Wang J M, Li K and Jiang L 2016 Spontaneous and directional transportation of gas bubbles on superhydrophobic cones Adv. Funct. Mater. 26 3236–43
[13] Vorobyev A Y and Guo C L 2013 Direct femtosecond laser surface nano/microstructuring and its applications Laser Photonics Rev. 7 385–407
[14] Stratakis E et al 2020 Laser engineering of biomimetic surfaces Mater. Sci. Eng. R. 141 100562
[15] Sugioka K and Cheng Y 2014 Ultrafast lasers-reliable tools for advanced materials processing Light Sci. Appl. 3 e149
[16] Liu X Q, Bai B F, Chen Q D and Sun H B 2019 Etching-assisted femtosecond laser modification of hard materials Opto Electron. Adv. 2 190021
[17] Chong T C, Hong M H and Shi L P 2010 Laser precision engineering: from microfabrication to nanoprocessing Laser Photonics Rev. 4 123–43
[18] Sugioka K and Cheng Y 2014 Femtosecond laser three-dimensional micro- and nanofabrication Appl. Phys. Rev. 1 041303
[19] Yong J L, Yang Q, Guo C L, Chen F and Hou X 2019 A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation RSC Adv. 9 12470–95
[20] Chen F, Zhang D S, Yang Q, Yong J L, Du G Q, Si J H, Yun F and Hou X 2013 Bioinspired wetting surface via laser microfabrication ACS Appl. Mater. Interfaces 5 6777–92
[21] Yong J L, Chen F, Yang Q and Hou X 2015 Femtosecond laser controlled wettability of solid surfaces Soft Matter 11 8897–906
[22] Yong J L, Chen F, Yang Q, Jiang Z D and Hou X 2018 A review of femtosecond-laser-induced underwater superoleophobic surfaces Adv. Mater. Interfaces 5 1701370
[23] Stratakis E, Ranella A and Fotakis C 2011 Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications Biomicrofluidics 5 013411
[24] Pazokian H, Selimis A, Barzin J, Jelvani S, Mollabashi M, Fotakis C and Stratakis E 2012 Tailoring the wetting properties of polymers from highly hydrophilic to superhydrophobic using UV laser pulses J. Micromech. Microeng. 22 035001
[25] Baldacchini T, Carey J E, Zhou M and Mazur E 2006 Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser Langmuir 22 4917–9
[26] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis S H and Fotakis C 2008 Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf Adv. Mater. 20 4049–54
[27] Yong J L, Chen F, Yang Q, Zhang D S, Bian H, Du G Q, Si J H, Meng X W and Xou X 2013 Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays Langmuir 29 3274–9
[28] Yong J L, Chen F, Yang Q, Zhang D S, Du G Q, Si J H, Yun F and Hou X 2013 Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion J. Phys. Chem. C 117 24907–12
[29] Yong J L, Yang Q, Chen F, Zhang D S, Farooq U, Du G Q and Hou X 2014 A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces J. Mater. Chem. A 2 5499–507
[30] Yong J L, Yang Q, Chen F, Zhang D S, Du G Q, Bian H, Si J H, Yun F and Hou X 2014 Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion Appl. Surf. Sci. 288 579–83
[31] Yong J L, Fang Y, Chen F, Huo J L, Yang Q, Bian H, Du G Q and Hou X 2016 Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions Appl. Surf. Sci. 389 1148–55
[32] Yu C M, Zhang P P, Wang J M and Jiang L 2017 Superwettability of gas bubbles and its application: from bioinspiration to advanced materials Adv. Mater. 29 1703053
[33] George J E, Chidangil S and George S D 2017 Recent progress in fabricating superaerophobic and superaerophilic surfaces Adv. Mater. Interfaces 4 1601088
[34] Tian Y, Su B and Jiang L 2014 Interfacial material system exhibiting superwettability Adv. Mater. 26 6872–97
[35] Yong J L, Singh S C, Zhan Z B, Chen F and Guo C L 2019 How to obtain six different superwettabilities on a same microstructured pattern: relationship between various superwettabilities in different solid/liquid/gas systems Langmuir 35 921–7
[36] Zhang D S and Sugioka K 2019 Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids Opto Electron. Adv. 2 190002
[37] Zhang Y Y, Jiao Y L, Li C Z, Chen C, Li J W, Hu Y L, Wu D and Chu J R 2020 Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications Int. J. Extreme Manuf. 2 032002
[38] Bai X, Yang Q, Fang Y, Zhang J Z, Yong J L, Hou X and Chen F 2020 Superhydrophobicity-memory surfaces prepared by a femtosecond laser Chem. Eng. J. 383 123143
[39] Shen M Y, Crouch C H, Carey J E and Mazur E 2004 Femtosecond laser-induced formation of submicrometer spikes on silicon in water Appl. Phys. Lett. 85 5694–6
[40] Shan C, Chen F, Yang Q, Li Y Y, Bian H, Yong J L and Hou X 2015 High-level integration of three-dimensional microcoils array in fused silica Opt. Lett. 40 4050–3
[41] Yong J L, Singh S C, Zhan Z B, EIKabbash M, Chen F and Guo C L 2019 Femtosecond-laser-produced underwater “superpolymphobic” nanorippled surfaces: repelling liquid polymers in water for applications of controlling polymer shape and adhesion ACS Appl. Nano Mater. 2 7362–71
[42] Larmour I A, Bell S E J and Saunders G C 2007 Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition Angew. Chem. 119 1740–2
[43] Yong J L, Chen F, Li M J, Yang Q, Fang Y, Huo J L and Hou X 2017 Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces J. Mater. Chem. A 5 25249–57
[44] Yong J L, Chen F, Yang Q, Huo J L and Hou X 2017 Superoleophobic surfaces Chem. Soc. Rev. 46 4168–217
[45] Cassie A B D and Baxter S 1944 Wettability of porous surfaces Trans. Faraday Soc. 40 546–51
[46] Wang S and Jiang L 2007 Definition of superhydrophobic states Adv. Mater. 19 3423–4
[47] Pei C T, Peng Y, Zhang Y, Tian D L, Liu K S and Jiang L 2018 An integrated Janus mesh: underwater bubble antibuoyancy unidirectional penetration ACS Nano 12 5489–94
[48] Yan S G et al 2018 Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment Appl. Phys. Lett. 113 261602
[49] Zhang C H, Zhang B, Ma H Y, Li Z, Xiao X, Zhang Y H, Cui X Y, Yu C M, Cao M Y and Jiang L 2018 Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment ACS Nano 12 2048–55
[50] Liu G L, Zhang C H, Liu M F, Guo Z W, Wang X S, Yu C M and Cao M Y 2020 Smart manipulation of gas bubbles in harsh environments via a fluorinert-infused shape-gradient slippery surface Trans. Tianjin Univ. 26 441–9
[51] Yong J L, Chen F, Fang Y, Huo J L, Yang Q, Zhang J Z, Bian H and Hou X 2017 Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles ACS Appl. Mater. Interfaces 9 39863–71
[52] Huo J L, Yong J L, Chen F, Yang Q, Fang Y and Hou X 2019 Trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces Adv. Mater. Interfaces 6 1900262
[53] Sackmann E K, Fulton A L and Beebe D J 2014 The present and future role of microfluidics in biomedical research Nature 507 181–9
[54] Shang L R, Cheng Y and Zhao Y J 2017 Emerging droplet microfluidics Chem. Rev. 117 7964–8040
[55] Zhang J, Yan S, Yuan D, Alici G, Nguyen N T, Warkiani M E and Li W H 2016 Fundamentals and applications of inertial microfluidics: a review Lab Chip 16 10–34
[56] Long J Y, Fan P X, Jiang D E, Han J P, Lin Y, Cai M Y, Zhang H J and Zhong M L 2016 Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures Adv. Mater. Interfaces 3 1600641
[57] Yong J L, Chen F, Yang Q, Farooq U and Hou X 2015 Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces J. Mater. Chem. A 3 10703–9