[1] T YASHIRO, Y OAKADA, Y NAIJOH. Novel design for color electrochromic display. International Display Workshops, 42-45(2011).
[5] F LI, D MA, J QIAN et al. One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device. Solar Energy Materials and Solar Cells, 103-108(2019).
[6] A L DYER, E J THOMPSON, J R REYNOLDS. Completing the color palette with spray-processable polymer electrochromics. ACS Applied Materials & Interfaces, 1787-1795(2011).
[7] K LI, Q ZHANG, H WANG et al. Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Applied Materials & Interfaces, 13043-13050(2014).
[8] H C MOON, C H KIM, T P LODGE et al. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Applied Materials & Interfaces, 6252-6260(2016).
[9] B YANG, D MA, E ZHENG et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cell, 1-7(2019).
[10] R ZHENG, Y FAN, Y WANG et al. A bifunctional triphenylamine- based electrochromic polymer with excellent self-healing performance. Electrochimica Acta, 296-303(2018).
[12] D S KIM, H PARK, S Y HONG et al. Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 300-308(2019).
[13] Y ALESANCO, A VINUALES, J PALENZUELA et al. Multicolor electrochromics: rainbow-like devices. ACS Applied Materials & Interfaces, 14795-14801(2016).
[15] X ZOU, Y WANG, Y TAN et al. Achieved RGBY four colors changeable electrochromic pixel by coelectrodeposition of iron hexacyanoferrate and molybdate hexacyanoferrate. ACS Applied Materials & Interfaces, 29432-29442(2020).
[20] K LEE, H TANAKA, A TAKAHASHI et al. Accelerated coloration of electrochromic device with the counter electrode of nanoparticulate Prussian blue-type complexes. Electrochimica Acta, 288-295(2015).
[22] A TAKAHASHI, K NOBA, H WATANABE et al. RSC Advances, 41083-41087(2019).
[23] S HONG, L CHEN. Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows. Solar Energy Materials and Solar Cells, 64-74(2012).
[24] M VENTURA, A MULLALIU, D E CIURDUC et al. Thin layer films of copper hexacyanoferrate: structure identification and analytical applications. Journal of Electroanalytical Chemistry, 10-20(2018).
[26] N M PEREIRA, C M PEREIRA, J P ARAÚJO et al. Zinc electrodeposition from deep eutectic solvent containing organic additives. Journal of Electroanalytical Chemistry, 545-551(2017).
[27] N WANG, H WAN, J DUAN et al. A review of zinc-based battery from alkaline to acid. Materials Today Advances(2021).
[28] F S HEGNER, J R GALÁN-MASCARÓS, N LOPEZ. A database of the structural and electronic properties of Prussian blue, Prussian white, and Berlin green compounds through density functional theory. Inorganic Chemistry, 12851-12862(2016).
[30] H LIAO, T LIAO, W CHEN et al. Molybdate hexacyanoferrate (MoOHCF) thin film: a brownish red Prussian blue analog for electrochromic window application. Solar Energy Materials and Solar Cells, 8-15(2016).
[33] L NIU, L CHEN, J ZHANG et al. Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. Journal of Power Sources(2018).
[34] Y CHEN, Z BI, X LI et al. High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochimica Acta, 534-540(2017).
[35] H MAENG, D KIM, N KIM et al. Synthesis of spherical Prussian blue with high surface area using acid etching. Current Applied Physics(2018).