• Ultrafast Science
  • Vol. 2, Issue 1, 0001 (2022)
Xi Chen1,2,* and Min Gu1,2,*
Author Affiliations
  • 1Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China.
  • 2Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
  • show less
    DOI: 10.34133/ultrafastscience.0001 Cite this Article
    Xi Chen, Min Gu. Two-Beam Ultrafast Laser Scribing of Graphene Patterns with 90-nm Subdiffraction Feature Size[J]. Ultrafast Science, 2022, 2(1): 0001 Copy Citation Text show less
    References

    [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–669.

    [2] Geim AK. Graphene: Status and prospects. Science. 2009;324(5934):1530−1534.

    [3] El-Kady MF, Shao YL, Kaner RB. Graphene for batteries, supercapacitors and beyond. Nat Rev Mater. 2016;1(7):16033.

    [4] Andrei EY, MacDonald AH. Graphene bilayers with a twist. Nat Mater. 2020;19(12):1265–1275.

    [5] Kong W, Kum H, Bae SH, Shim J, Kim H, Kong L, Meng Y, Wang K, Kim C, Kim J. Path towards graphene commercialization from lab to market. Nat Nanotechnol. 2019;14(10):927–938.

    [6] Yuan Y, Jiang L, Li X, Zuo P, Xu C, Tian M, Zhang X, Wang S, Lu B, Shao C, et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun. 2020;11(1):6185.

    [7] Xiao J, Zhan H, Wang X, Xu ZQ, Xiong Z, Zhang K, Simon GP, Liu JZ, Li D. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat Nanotechnol. 2020;15(8):683–689.

    [8] Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537–1541.

    [9] Wan Z, Chen X, Gu M. Laser scribed graphene for supercapacitors. Opto-Electron Adv. 2021;4(7):200079.

    [10] Chen Y, Hu P, Huang Z, Wang J, Song H, Chen X, Lin X, Wu T, Tan X. Significant enhancement of the polarization holographic performance of photopolymeric materials by introducing graphene oxide. ACS Appl Mater Interfaces. 2021;13(23):27500–27512.

    [11] Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun. 2015;6:6984.

    [12] Li X, Zhang Q, Chen X, Gu M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep. 2013;3:2819.

    [13] Stanford MG, Zhang C, Fowlkes JD, Hoffman A, Ivanov IN, Rack PD, Tour JM. High-resolution laser-induced graphene. flexible electronics beyond the visible limit. ACS Appl Mater Interfaces. 2020;12(9):10902–10907.

    [14] Sun B, McCay RN, Goswami S, Xu Y, Zhang C, Ling Y, Lin J, Yan Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater. 2018;30(50):e1804327.

    [15] Tao LQ, Tian H, Liu Y, Ju ZY, Pang Y, Chen YQ, Wang DY, Tian XG, Yan JC, Deng NQ, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun. 2017;8:14579.

    [16] Pace G, Serri M, del Rio Castillo AE, Ansaldo A, Lauciello S, Prato M, Pasquale L, Luxa J, Mazánek V, Sofer Z, et al. Nitrogen-doped graphene based triboelectric nanogenerators. Nano Energy. 2021;87:106173.

    [17] Stanford MG, Li JT, Chyan Y, Wang Z, Wang W, Tour JM. Laser-induced graphene triboelectric nanogenerators. ACS Nano. 2019;13(6):7166–7174.

    [18] Luo J, Fan FR, Jiang T, Wang Z, Tang W, Zhang C, Liu M, Cao G, Wang ZL. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015;8:3934–3943.

    [19] Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR. Simple room-temperature preparation of high-yield large-area graphene oxide. Int J Nanomedicine. 2011;6:3443–3448.

    [20] Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806–4814.

    [21] Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel EL, Yacaman MJ, Yakobson BI, Tour JM. Laser-induced porous graphene films from commercial polymers. Nat Commun. 2014;5:5714.

    [22] Ye R, James DK, Tour JM. Laser-induced graphene: From discovery to translation. Adv Mater. 2019;31(1):e1803621.

    [23] Ye R, James DK, Tour JM. Laser-induced graphene. Acc Chem Res. 2018;51(7):1609–1620.

    [24] Hooch Antink W, Choi Y, Seong K-d, Kim JM, Piao Y. Recent progress in porous graphene and reduced graphene oxide-based nanomaterials for electrochemical energy storage devices. Adv Mater Interfaces. 2018;5(5):Article 1701212.

    [25] Liang L, Feng Z, Zhang Q, Cong TD, Wang Y, Qin X, Yi Z, Ang MJY, Zhou L, Feng H, et al. Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles. Nat Nanotechnol. 2021;16(6):975–980.

    [26] Beckham JL, Li JT, Stanford MG, Chen W, McHugh EA, Advincula PA, Wyss KM, Chyan Y, Boldman WL, Rack PD, et al. High-resolution laser-induced graphene from photoresist. ACS Nano. 2021;15(5):8976–8983.

    [27] El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun. 2013;4:1475.

    [28] Shen D, Zou G, Liu L, Zhao W, Wu A, Duley WW, Zhou YN. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer. ACS Appl Mater Interfaces. 2018;10(6):5404–5412.

    [29] Gan Z, Cao Y, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun. 2013;4:2061.

    [30] Gan Z, Turner MD, Gu M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci Adv. 2016;2(5):e1600084.

    [31] Lamon S, Wu Y, Zhang Q, Liu X, Gu M. Nanoscale optical writing through upconversion resonance energy transfer. Sci Adv. 2021;7(9):eabe2209.

    [32] Mitoma N, Nouchi R, Tanigaki K. Photo-oxidation of graphene in the presence of water. J Phys Chem C. 2013;117(3):1453–1456.

    [33] Koivistoinen J, Sládková L, Aumanen J, Koskinen P, Roberts K, Johansson A, Myllyperkiö P, Pettersson M. From seeds to islands: Growth of oxidized graphene by two-photon oxidation. J Phys Chem C. 2016;120(39):22330–22341.

    [34] Chen X, Luan H, Gu M. Beyond high-voltage capacitors: Supercapacitor arrays based on laser-scribed subwavelength-featured graphene patterns. ACS Appl Energy Mater. 2022;5(8):9315–9323.

    [35] Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem. 2011;21(18):6494−6497.

    [36] Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C. 2011;115(34):17206−17212.

    [37] Sheng K-X, Xu Y-X, Li C, Shi G-Q. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 2011;26(1):9−15.

    [38] Ning G, Fan Z, Wang G, Gao J, Qian W, Wei F. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun. 2011;47:5976−5978.

    [39] Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 2012;12(4):1806–1812.

    [40] Luan VH, Tien HN, Hoa LT, Hien NTM, Oh E-S, Chung J, Kim EJ, Choi WM, Kong B-S, Hur SH. Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J Mater Chem A. 2013;1:208−211.

    [41] Xu Y, Chen C-Y, Zhao Z, Lin Z, Lee C, Xu X, Wang C, Huang Y, Shakir MI, Duan X. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015;15(7):4605−4610.

    [42] Bai Y, Yang X, He Y, Zhang J, Kang L, Xu H, Shi F, Lei Z, Liu Z-H. Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochimica Acta. 2016;187:543−551.

    [43] Huo J, Zheng P, Wang X, Gou S. Three-dimensional sulphur/nitrogen co-doped reduced graphene oxide as high-performance supercapacitor binder-free electrodes. Appl Surf Sci. 2018;442:575−580.

    [44] Chen Y, Liu Z, Sun L, Lu Z, Zhuo K. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. J Power Sources. 2018;390:215−223.

    [45] Ramabadran U, Ryan G, Zhou X, Farhat S, Manciu F, Tong Y, Ayler R, Garner G. Reduced graphene oxide on nickel foam for supercapacitor electrodes. Materials (Basel). 2017;10(11):1295.

    [46] Chen Y, Li Y, Yao F, Peng C, Cao C, Feng Y, Feng W. Nitrogen and fluorine co-doped holey graphene hydrogel as a binder-free electrode material for flexible solid-state supercapacitors. Sustain Energy Fuels. 2019;3:2237–2245.

    [47] Jia S, Zang J, Tian P, Zhou S, Cai H, Tian X, Wang Y. A 3-D covalently crosslinked N-doped porous carbon/holey graphene composite for quasi-solid-state supercapacitors. Microporous Mesoporous Mater. 2020;293:109796.

    [48] Shao Y, Li J, Li Y, Wang H, Zhang Q, Kaner RB. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater Horiz. 2017;4:1145−1150.

    [49] Goi E, Zhang Q, Chen X, Luan H, Gu M. Perspective on photonic memristive neuromorphic computing. PhotoniX. 2020;1(1):3.

    Xi Chen, Min Gu. Two-Beam Ultrafast Laser Scribing of Graphene Patterns with 90-nm Subdiffraction Feature Size[J]. Ultrafast Science, 2022, 2(1): 0001
    Download Citation