• Study On Optical Communications
  • Vol. 49, Issue 3, 24 (2023)
An-ran JIN2 and He LI1,2,*
Author Affiliations
  • 1School of Electronic Science and Engineering, Southeast University, Nanjing 210018, China
  • 2Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
  • show less
    DOI: 10.13756/j.gtxyj.2023.03.005 Cite this Article
    An-ran JIN, He LI. Hybrid Continuous-discrete Variable Quantum Key Distribution[J]. Study On Optical Communications, 2023, 49(3): 24 Copy Citation Text show less
    References

    [1] Xu F H, Ma X F, Zhang Q et al. Secure Quantum Key Distribution with Realistic Devices[J]. Reviews of Modern Physics, 92, 025002(2020).

    [2] Pirandola S, Andersen U L, Banchi L et al. Advances in Quantum Cryptography[J]. Advances in Optics and Photonics, 12, 361502(2020).

    [3] Liu Y, Chen T Y, Wang J et al. Decoy-state Quantum Key Distribution with Polarized Photons over 200 km[J]. Optics Express, 18, 8587-8594(2010).

    [4] Liao S K, Yong H L, Liu C et al. Long-distance Free-space Quantum Key Distribution in Daylight Towards Inter-satellite Communication[J]. Nature Photonics, 11, 509-513(2017).

    [5] Boaron A, Boso G, Rusca D et al. Secure Quantum Key Distribution over 421 km of Optical Fiber[J]. Physical Review Letters, 121, 190502(2018).

    [6] Grosshans F, Grangier P. Continuous Variable Quantum Cryptography Using Coherent States[J]. Physical Review Letters, 88, 057902(2002).

    [7] Kleis S, Rueckmann M, Schaeffer C G. Continuous Variable Quantum Key Distribution with a Real Local Oscillator Using Simultaneous Pilot Signals[J]. Optics Letters, 42, 001588(2017).

    [8] Wang T, Huang P, Zhou Y et al. High Key Rate Continuous-variable Quantum Key Distribution with a Real Local Oscillator[J]. Optics Express, 26, 2794-2806(2018).

    [9] Jouguet P, Kunz-Jacques S, Diamanti E et al. Analysis of Imperfections in Practical Continuous-variable Quantum Key Distribution[J]. Physical Review A, 86, 032309(2012).

    [10] Kaur E, Guha S, Wilde M M. Asymptotic Security of Discrete-modulation Protocols for Continuous-variable Quantum Key Distribution[J]. Physical Review A, 103, 012412(2021).

    [11] Zhang G, Haw J Y, Cai H et al. An Integrated Silicon Photonic Chip Platform for Continuous-variable Quantum Key Distribution[J]. Nature Photonics, 13, 839-842(2019).

    [12] Qi B, Zhu W, Qian L et al. Feasibility of Quantum Key Distribution Through a Dense Wavelength Division Multiplexing Network[J]. New Journal of Physics, 12, 103042(2010).

    [13] Kumar R, Qin H, Alléaume R. Coexistence of Continuous Variable QKD with Intense DWDM Classical Channels[J]. New Journal of Physics, 17, 043027(2015).

    [14] Eriksson T A, Hirano T, Puttnam B J et al. Wavelength Division Multiplexing of Continuous Variable Quantum Key Distribution and 18.3 Tbit/s Data Channels[J]. Communications Physics, 2, 1-8(2019).

    [15] Leverrier A, Grangier P. Unconditional Security Proof of Long-distance Continuous-variable Quantum Key Distribution with Discrete Modulation[J]. Physical Review Letters, 102, 180504(2009).

    [16] Brádler K, Weedbrook C. Security Proof of Continuous-variable Quantum Key Distribution Using Three Coherent States[J]. Physical Review A, 97, 022310(2018).

    [17] Ghorai S, Grangier P, Diamanti E et al. Asymptotic Security of Continuous-variable Quantum Key Distribution with a Discrete Modulation[J]. Physical Review X, 9, 021059(2019).

    [18] Lin J, Upadhyaya T, Lütkenhaus N. Asymptotic Security Analysis of Discrete-modulated Continuous-Variable Quantum Key Distribution[J]. Physical Review X, 9, 041064(2019).

    [19] Matsuura T, Maeda K, Sasaki T et al. Finite-size Security of Continuous-variable Quantum Key Distribution with Digital Signal Processing[J]. Nature Communications, 12, s41467-020-19916-1(2021).

    [20] Qi B. Bennett-Brassard 1984 Quantum Key Distribution Using Conjugate Homodyne Detection[J]. Physical Review A, 103, 012606(2021).

    [21] Primaatmaja I W, Liang C C, Zhang G et al. Discrete-variable Quantum Key Distribution based on Homodyne Detection[DB/OL].

    [22] Rivest R L, Shamir A, Adleman L. A Method for Obtaining Digital Signatures and Public-key Cryptosystems[J]. Communications of the ACM, 21, 120-136(1978).

    [23] Heisenberg W. über den Anschaulichen Inhalt der Quantentheoretischen Kinematik und Mechanik[J]. Zeitschrift fu¨r Physik, 43, 172-198(1927).

    [24] Tomamichel M, Renner R. Uncertainty Relation for Smooth Entropies[J]. Physical Review Letters, 106, 110506(2011).

    [25] Bennett C H, DiVincenzo D P, Smolin J A et al. Mixed-state Entanglement and Quantum Error Correction[J]. Physical Review A, 54, 3824-3851(1996).

    [26] Lo H K, Chau H F, Ardehali M. Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security[J]. Journal of Cryptology, 18, 133-165(2005).

    [27] Ben-Or M, Horodecki M, Leung W D et al. The Universal Composable Security of Quantum Key Distribution[C], 386-406(2005).

    [28] Renner R, König R. Universally Composable Privacy Amplification Against Quantum Adversaries[C], 407-425(2005).

    [29] Shor P W, Preskill J. Simple Proof of Security of the BB84 Quantum Key Distribution Protocol[J]. Physical Review Letters, 85, 441-444(2000).

    [30] Calderbank A R, Shor P W. Good Quantum Error-correcting Codes Exist[J]. Physical Review A, 54, 1098-1105(1996).

    [31] Steane A M. Simple Quantum Error-correcting Codes[J]. Physical Review A, 54, 4741-4761(1996).

    [32] Koashi M. Simple Security Proof of Quantum Key Distribution based on Complementarity[J]. New Journal of Physics, 11, 045018(2009).

    [33] Devetak I, Winter A. Distillation of Secret Key and Entanglement from Quantum States[J]. Proceedings of the Royal Society A, 461, 207-235(2005).

    [34] Renner R. Symmetry of Large Physical Systems Implies Independence of Subsystems[J]. Nature Physics, 3, 645-649(2007).

    [35] Christandl M, König R, Renner R. Postselection Technique for Quantum Channels with Applications to Quantum Cryptography[J]. Physical Review Letters, 102, 020504(2009).

    [36] Coles P J, Metodiev E M, Lütkenhaus N. Numerical Approach for Unstructured Quantum Key Distribution[J]. Nature Communications, 7, 11712(2016).

    [37] Zhou H, Sasaki T, Koashi M. Numerical Method for Finite-size Security Analysis of Quantum Key Distribution[DB/OL].

    [38] Li H, Wonfor A, Weerasinghe A et al. Quantum Key Distribution Post-processing: A Heterogeneous Computing Perspective[C], 9908122(2022).

    [39] Migdal D, Bostock N. Toshiba Shrinks Quantum Key Distribution Technology to a Semiconductor Chip[EB/OL]. https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/toshiba-shrinks-quantum-key-distribution-technology-to-a-semiconductor-chip

    [40] Yuan Z, Plews A, Takahashi R et al. 10 Mb/s Quantum Key Distribution[J]. Journal of Lightwave Technology, 36, 3427-3433(2018).

    [41] Constantin J, Houlmann R, Preyss N et al. An FPGA-based 4 Mbps Secret Key Distillation Engine for Quantum Key Distribution Systems[J]. Journal of Signal Processing Systems, 86, 1-5(2017).

    [42] Huang D, Lin D, Wang C et al. Continuous-variable Quantum Key Distribution with 1 Mbps Secure Key Rate[J]. Optics Express, 23, 17511-17519(2015).

    [43] Wang X Y, Zhang Y C, Yu S et al. High-speed Implementation of Length-compatible Privacy Amplification in Continuous-variable Quantum Key Distribution[J]. IEEE Photonics Journal, 10, 2824316(2018).

    [44] Elkouss D, Leverrier A, Alléaume R et al. Efficient Reconciliation Protocol for Discrete-variable Quantum Key Distribution[DB/OL].

    [45] Nakassis A, Mink A. LDPC Error Correction in the Context of Quantum Key Distribution[C], 919117(2012).

    [46] Dixon A R, Sato H. High Speed and Adaptable Error Correction for Megabit/s Rate Quantum Key Distribution[J]. Scientific Reports, 4, 07275(2015).

    [47] Deutsch D, Ekert A, Jozsa R et al. Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels[J]. Physical Review Letters, 77, 2818-2821(1996).

    [48] Li H, Pang Y. FPGA-accelerated Quantum Computing Emulation and Quantum Key Distillation[J]. IEEE Micro, 41, 49-57(2021).

    [49] Tamaki K, Koashi M, Imoto N. Unconditionally Secure Key Distribution based on Two Nonorthogonal States[J]. Physical Review Letters, 90, 167904(2003).

    [50] Zhao Y B, Heid M, Rigas J et al. Asymptotic Security of Binary Modulated Continuous-variable Quantum Key Distribution under Collective Attacks[J]. Physical Review A, 79, 012307(2009).

    [51] Jin A, Zeng P, Penty RV et al. Reference-frame-independent Design of Phase-matching Quantum Key Distribution[J]. Physical Review Applied, 16, 034017(2021).

    [52] Bennett C H, Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing[J]. Theoretical Computer Science, 560, 7-11(2014).

    [53] Qi B, Lougovski P, Williams B P. Characterizing Photon Number Statistics Using Conjugate Optical Homodyne Detection[J]. Optics Express, 28, 2276-2290(2020).

    [54] Lo H K, Ma X, Chen K. Decoy State Quantum Key Distribution[J]. Physical Review Letters, 94, 230504(2005).

    [55] Wang X B. Beating the Photon-number-splitting Attack in Practical Quantum Cryptography[J]. Physical Review Letters, 94, 230503(2005).

    [56] Schwonnek R, Goh K T, Primaatmaja I W et al. Device-independent Quantum Key Distribution with Random Key Basis[J]. Nature Communications, 12, 23147(2021).