• Nano-Micro Letters
  • Vol. 16, Issue 1, 001 (2024)
Charlie A. F. Nason, Ajay Piriya Vijaya Kumar Saroja, Yi Lu, Runzhe Wei..., Yupei Han and Yang Xu*|Show fewer author(s)
Author Affiliations
  • Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
  • show less
    DOI: 10.1007/s40820-023-01222-2 Cite this Article
    Charlie A. F. Nason, Ajay Piriya Vijaya Kumar Saroja, Yi Lu, Runzhe Wei, Yupei Han, Yang Xu. Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium-Ion Battery Anode[J]. Nano-Micro Letters, 2024, 16(1): 001 Copy Citation Text show less
    References

    [1] J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen et al., The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4(11), 5387–5416 (2020).

    [2] Y. Mizutani, T. Abe, K. Ikeda, E. Ihara, M. Asano et al., Graphite intercalation compounds prepared in solutions of alkali metals in 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran. Carbon 35(1), 61–65 (1997).

    [3] D.M. Ottmers, H.F. Rase, Potassium graphites prepared by mixed-reaction technique. Carbon 4(1), 125–127 (1966).

    [4] S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015).

    [5] Z. Jian, W. Luo, X. Ji, Carbon electrodes for k-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015).

    [6] X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.-S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019).

    [7] J. Zheng, Y. Wu, Y. Tong, X. Liu, Y. Sun et al., High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro Lett. 13(1), 174 (2021).

    [8] N. Cheng, W. Zhou, J. Liu, Z. Liu, B. Lu, Reversible oxygen-rich functional groups grafted 3d honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett. 14(1), 146 (2022).

    [9] D. Li, F. Ji, T. Liu, X. Zhao, Q. Sun et al., Trash to treasure: recycling discarded agarose gel for practical na/k-ion batteries. J. Mater. Chem. A 10(28), 15026–15035 (2022).

    [10] D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu et al., Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. (2018).

    [11] X. Li, J. Li, L. Ma, C. Yu, Z. Ji et al., Graphite anode for potassium ion batteries: current status and perspective. Energy Environ. Mater. 5(2), 458–469 (2022).

    [12] D. Li, L. Dai, X. Ren, F. Ji, Q. Sun et al., Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 14(1), 424–436 (2021).

    [13] M.T. McDowell, S. Xia, T. Zhu, The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech. Lett. 9, 480–494 (2016).

    [14] J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang et al., Strongly coupled 2d transition metal chalcogenide-mxene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 13(1), 113 (2021).

    [15] X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13(1), 179 (2021).

    [16] A. Rudola, A.J.R. Rennie, R. Heap, S.S. Meysami, A. Lowbridge et al., Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem A 9(13), 8279–8302 (2021).

    [17] R.C. Massé, C. Liu, Y. Li, L. Mai, G. Cao, Energy storage through intercalation reactions: electrodes for rechargeable batteries. Natl. Sci. Rev. 4(1), 26–53 (2017).

    [18] Crc handbook of chemistry and physics. 97th. pp 14–17

    [19] Z. Tong, R. Yang, S. Wu, D. Shen, T. Jiao et al., Surface-engineered black niobium oxide@graphene nanosheets for high-performance sodium-/potassium-ion full batteries. Small 15(28), e1901272 (2019).

    [20] J. Han, M. Xu, Y. Niu, G.N. Li, M. Wang, Y. Zhang, M. Jia, C.M. Li, Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem. Commun. 52(75), 11274–11276 (2016).

    [21] S. Zhao, L. Dong, B. Sun, K. Yan, J. Zhang et al., K2Ti2O5 @c microspheres with enhanced k(+) intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small 16(4), e1906131 (2020).

    [22] A.P. Vijaya Kumar Saroja, Z. Wang, H.R. Tinker, F.R. Wang, P.R. Shearing et al., Enabling intercalation-type TiNb24O62 anode for sodium- and potassium-ion batteries via a synergetic strategy of oxygen vacancy and carbon incorporation. SusMat 3(2), 222–234 (2023).

    [23] B. Kishore, V.G.N. Munichandraiah, K2Ti4O9: a promising anode material for potassium ion batteries. J. Electrochem. Soc. 163(13), A2551–A2554 (2016).

    [24] Y. Dong, Z.S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang et al., Ti3C2 mxene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11(5), 4792–4800 (2017).

    [25] D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO(2)/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13(1), 107 (2021).

    [26] S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018).

    [27] A.K. Kulkarni, C.S. Praveen, Y.A. Sethi, R.P. Panmand, S.S. Arbuj et al., Nanostructured n-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans. 46(43), 14859–14868 (2017).

    [28] Y.-H. Zhu, J.-Z. Wang, Q. Zhang, Y.-F. Cui, G. Huang et al., Creation of a rigid host framework with optimum crystal structure and interface for zero-strain k-ion storage. Energy Environ. Sci. 15(4), 1529–1535 (2022).

    [29] L. Ling, X. Wang, M. Zhou, K. Wu, C. Lin et al., Carbon-coated flower-like TiO2 nanosphere as an ultrastable anode material for potassium-ion batteries: structure design and mechanism study. ACS Appl. Energy Mater. (2022).

    [30] A.D. Wadsley, Alkali titanoniobates. The crystal structures of KTinBO5 and KTi3NbO9. Acta Crystallogr. 17(6), 623–628 (1964).

    [31] H. Takahashi, M. Kakihana, Y. Yamashita, K. Yoshida, S. Ikeda et al., Synthesis of nio-loaded ktinbo5 photocatalysts by a novel polymerizable complex method. J. Alloys Compd. 285(1), 77–81 (1999).

    [32] A. Kudo, E. Kaneko, Photoluminescent properties of ion-exchangeable layered oxides. Micropor. Mesopor. Mater. 21(4), 615–620 (1998).

    [33] H. Park, J. Kwon, H. Choi, T. Song, U. Paik, Microstructural control of new intercalation layered titanoniobates with large and reversible d-spacing for easy Na(+) ion uptake. Sci. Adv. 3(10), e1700509 (2017).

    [34] Y. Yuan, H. Yu, X. Cheng, W. Ye, T. Liu et al., H0.92K0.08TinBo5 nanowires enabling high-performance lithium-ion uptake. ACS Appl. Mater. Interfaces 11(9), 9136–9143 (2019).

    [35] C. Lai, Z. Zhang, Y. Xu, J. Liao, Z. Xu et al., A general strategy for embedding ultrasmall CoMx nanocrystals (m = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J. Mater. Chem. A 9(3), 1487–1494 (2021).

    [36] M. Jiang, L. Sheng, C. Wang, L. Jiang, Z. Fan, Graphene film for supercapacitors: preparation, foundational unit structure and surface regulation. Acta Phys. Chim. Sinica (2021).

    [37] S. Che, S.K. Behura, V. Berry, Photo-organometallic, nanoparticle nucleation on graphene for cascaded doping. ACS Nano 13(11), 12929–12938 (2019).

    [38] J. Li, M. Östling, Prevention of graphene restacking for performance boost of supercapacitors—a review. Crystals 3(1), 163–190 (2013).

    [39] Y. Du, Z. Yi, B. Chen, J. Xu, Z. Zhang et al., Sn4P3 nanoparticles confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. J. Energy Chem. 66, 413–421 (2022).

    [40] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958).

    [41] Q. Cheng, J. Liang, Y. Zhu, L. Si, C. Guo et al., Bulk ti2nb10o29as long-life and high-power li-ion battery anodes. J. Mater. Chem. A 2(41), 17258–17262 (2014).

    [42] C. Yang, S. Deng, C. Lin, S. Lin, Y. Chen et al., Porous Tinb(24)O(62) microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. Nanoscale 8(44), 18792–18799 (2016).

    [43] O. Budak, P. Srimuk, M. Aslan, H. Shim, L. Borchardt et al., Titanium niobium oxide Ti(2) Nb(10) O(29)/carbon hybrid electrodes derived by mechanochemically synthesized carbide for high-performance lithium-ion batteries. Chemsuschem 14(1), 398–407 (2021).

    [44] H. Shim, E. Lim, S. Fleischmann, A. Quade, A. Tolosa et al., Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications. Sustain. Energy Fuels 3(7), 1776–1789 (2019).

    [45] Nist x-ray photoelectron spectroscopy database, nist standard reference database number 20. 20899 (2000).

    [46] D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014).

    [47] M. Hervieu, H. Rebbah, G. Desgardin, B. Raveau, Layer structure: the oxides a3ti5mo14. J. Solid State Chem. 35(2), 200–206 (1980).

    [48] M. Bains, D. Bradley, Coordination complexes of metal alkoxides: Part ii. Metal alkoxide–ethylenediamine complexes. Canadian J. Chem. 40(12), 2218–2228 (1962).

    [49] P. Xu, H. Xiao, X. Liang, T. Zhang, F. Zhang et al., A mxene-based eda-ti3c2tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material. Carbon 173, 135–144 (2021).

    [50] R.-C. Xie, J.K. Shang, Morphological control in solvothermal synthesis of titanium oxide. J. Mater. Sci. 42(16), 6583–6589 (2007).

    [51] M. Kusuma, G.T. Chandrappa, Effect of calcination temperature on characteristic properties of camoo4 nanoparticles. J. Sci. Adv. Mater. Devices 4(1), 150–157 (2019).

    [52] X. Han, P.A. Russo, C. Triolo, S. Santangelo, N. Goubard-Bretesché et al., Comparing the performance of Nb2O5 composites with reduced graphene oxide and amorphous carbon in li- and na-ion electrochemical storage devices. ChemElectroChem 7(7), 1689–1698 (2020).

    [53] J. Bao, W. Deng, J. Liu, C.-F. Sun, Ultrafast-kinetics, ultralong-cycle-life, bifunctional inorganic open-framework for potassium-ion batteries. Energy Storage Mater. 42, 806–814 (2021).

    [54] W. Wang, Z. Kang, C.-F. Sun, Y. Li, K2.13V1.52Ti0.48(PO4)3 as an anode material with a long cycle life for potassium-ion batteries. Electrochem. Commun. (2022).

    [55] G.H. Du, Y. Yu, Q. Chen, R.H. Wang, W. Zhou et al., Exfoliating ktinbo5 particles into nanosheets. Chem. Phys. Lett. 377(3–4), 445–448 (2003).

    [56] X. Zhao, Y. Chen, H. Sun, T. Yuan, Y. Gong et al., Impact of surface structure on sei for carbon materials in alkali ion batteries: a review. Batteries 9(4), 9040226 (2023).

    [57] L. Bläubaum, F. Röder, C. Nowak, H.S. Chan, A. Kwade et al., Impact of particle size distribution on performance of lithium-ion batteries. ChemElectroChem 7(23), 4755–4766 (2020).

    [58] L. Deng, Z. Yang, L. Tan, L. Zeng, Y. Zhu et al., Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 30(31), e1802510 (2018).

    [59] W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (eis) for lithium-ion batteries. J. Electrochem. Sci. Techn. 11(1), 1–13 (2020).

    [60] A. Nickol, T. Schied, C. Heubner, M. Schneider, A. Michaelis et al., Gitt analysis of lithium insertion cathodes for determining the lithium diffusion coefficient at low temperature: challenges and pitfalls. J. Electrochem. Soc. 167(9), 090546 (2020).

    [61] H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101(39), 7717–7722 (1997).

    [62] J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007).

    Charlie A. F. Nason, Ajay Piriya Vijaya Kumar Saroja, Yi Lu, Runzhe Wei, Yupei Han, Yang Xu. Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium-Ion Battery Anode[J]. Nano-Micro Letters, 2024, 16(1): 001
    Download Citation