• Nano-Micro Letters
  • Vol. 16, Issue 1, 140 (2024)
Jianmin Yang1,2, Li Chang3, Xiqi Zhang1,4, Ziquan Cao1,5,*, and Lei Jiang1,4,**
Author Affiliations
  • 1Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
  • 2University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
  • 3College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, People’s Republic of China
  • 4Binzhou Institute of Technology, Binzhou, 256600, People’s Republic of China
  • 5Nanomics Biotechnology Co., Ltd., Hangzhou, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01333-4 Cite this Article
    Jianmin Yang, Li Chang, Xiqi Zhang, Ziquan Cao, Lei Jiang. Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes[J]. Nano-Micro Letters, 2024, 16(1): 140 Copy Citation Text show less
    References

    [1] J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 (2021).

    [2] S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan et al., Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11, 4346–4357 (2017).

    [3] X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    [4] J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, S.-H. Yu, Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139, 9921–9926 (2017).

    [5] H. Kim, M. Seo, J.-W. Kim, D.-K. Kwon, S.-E. Choi et al., Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire–single-walled carbon nanotube composite. Adv. Funct. Mater. 29, 1901061 (2019).

    [6] C. Qu, X. Yu, Y. Xu, S. Zhang, H. Liu et al., A sensing and display system on wearable fabric based on patterned silver nanowires. Nano Energy 104, 107965 (2022).

    [7] L. Zhang, X. Zhang, H. Zhang, L. Xu, D. Wang et al., Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. Chem. Eng. J. 434, 134751 (2022).

    [8] W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao et al., Highly conductive, air-stable silver Nanowire@Iongel composite films toward flexible transparent electrodes. Adv. Mater. 28, 7167–7172 (2016).

    [9] J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang et al., Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24, 2874–2878 (2012).

    [10] H.-S. Lim, J.-M. Oh, J.-W. Kim, One-way continuous deposition of monolayer MXene nanosheets for the formation of two confronting transparent electrodes in flexible capacitive photodetector. ACS Appl. Mater. Interfaces 13, 25400–25409 (2021).

    [11] H.-M. Sim, H.-K. Kim, Highly flexible Ag nanowire network covered by a graphene oxide nanosheet for high-performance flexible electronics and anti-bacterial applications. Sci. Technol. Adv. Mater. 22, 794–807 (2021).

    [12] D. Wen, X. Wang, L. Liu, C. Hu, C. Sun et al., Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices. ACS Appl. Mater. Interfaces 13, 17766–17780 (2021).

    [13] R. Li, X. Ma, J. Li, J. Cao, H. Gao et al., Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat. Commun. 12, 1587 (2021).

    [14] J.-W. Liu, J.-L. Wang, Z.-H. Wang, W.-R. Huang, S.-H. Yu, Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem. Int. Ed. 53, 13477–13482 (2014).

    [15] J. Wang, C. Teng, Y. Jiang, Y. Zhu, L. Jiang, Wetting-induced climbing for transferring interfacially assembled large-area ultrathin pristine graphene film. Adv. Mater. 31, e1806742 (2019).

    [16] G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen et al., Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016).

    [17] F. Yin, H. Lu, H. Pan, H. Ji, S. Pei et al., Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring. Sci. Rep. 9, 2403 (2019).

    [18] T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020).

    [19] C. Ma, H. Liu, C. Teng, L. Li, Y. Zhu et al., Wetting-induced fabrication of graphene hybrid with conducting polymers for high-performance flexible transparent electrodes. ACS Appl. Mater. Interfaces 12, 55372–55381 (2020).

    [20] Q. Fan, J. Miao, X. Liu, X. Zuo, W. Zhang et al., Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Lett. 22, 740–750 (2022).

    [21] Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115, 34–42 (2017).

    [22] S.-K. Duan, Q.-L. Niu, J.-F. Wei, J.-B. He, Y.-A. Yin et al., Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes. Phys. Chem. Chem. Phys. 17, 8106–8112 (2015).

    [23] L. Chang, X. Zhang, Y. Ding, H. Liu, M. Liu et al., Ionogel/copper grid composites for high-performance, ultra-stable flexible transparent electrodes. ACS Appl. Mater. Interfaces 10, 29010–29018 (2018).

    [24] Z. Wang, X. Sun, Z. Guo, R. Xi, L. Xu et al., Fabrication of submicron linewidth silver grid/ionogel hybrid films for highly stable flexible transparent electrodes via asymmetric wettability template-assisted self-assembly. Chem. Eng. J. 469, 144065 (2023).

    [25] A. Khan, V.H. Nguyen, D. Muñoz-Rojas, S. Aghazadehchors, C. Jiménez et al., Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 10, 19208–19217 (2018).

    [26] S.R. Das, Q. Nian, M. Saei, S. Jin, D. Back et al., Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire network. ACS Nano 9, 11121–11133 (2015).

    [27] Y. Kim, T.I. Ryu, K.-H. Ok, M.-G. Kwak, S. Park et al., Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 25, 4580–4589 (2015).

    [28] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    [29] S. Bai, X. Guo, X. Zhang, X. Zhao, H. Yang, Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos. Part A Appl. Sci. Manuf. 149, 106545 (2021).

    [30] W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643–16653 (2020).

    [31] H. Tang, H. Feng, H. Wang, X. Wan, J. Liang et al., Highly conducting MXene-silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces 11, 25330–25337 (2019).

    [32] M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022).

    [33] Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016).

    [34] R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2T x MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018).

    [35] Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong et al., A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 (2017).

    [36] Q. Tan, L. Yuan, G. Liang, A. Gu, Flexible, transparent, strong and high dielectric constant composite film based on polyionic liquid coated silver nanowire hybrid. Appl. Surf. Sci. 576, 151827 (2022).

    [37] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides MXenes. Science 353, 1137–1140 (2016).

    [38] X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a welding flexible transparent electrode. Adv. Mater. 32, e1908478 (2020).

    [39] Y. Tang, W. He, G. Zhou, S. Wang, X. Yang et al., A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering. Nanotechnology 23, 355304 (2012).

    [40] H.B. Lee, W.-Y. Jin, M.M. Ovhal, N. Kumar, J.-W. Kang, Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. C 7, 1087–1110 (2019).

    [41] W.Y. Jin, M.M. Ovhal, H.B. Lee, B. Tyagi, J.W. Kang, Scalable, all-printed photocapacitor fibers and modules based on metal-embedded flexible transparent conductive electrodes for self-charging wearable applications. Adv. Energy Mater. 11(4), 2003509 (2020).

    [42] K.-J. Ko, H.B. Lee, J.-W. Kang, Flexible, wearable organic light-emitting fibers based on PEDOT: PSS/Ag-fiber embedded hybrid electrodes for large-area textile lighting. Adv. Mater. Technol. 5, 2000168 (2020).

    [43] Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu et al., Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos. Sci. Technol. 215, 109023 (2021).

    [44] M. Zhu, X. Yan, Y. Lei, J. Guo, Y. Xu et al., An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 14520–14531 (2022).

    [45] Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017).

    [46] L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2T x MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399–25409 (2019).

    [47] H.-J. Kim, E.-C. Yim, J.-H. Kim, S.-J. Kim, J.-Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017).

    Jianmin Yang, Li Chang, Xiqi Zhang, Ziquan Cao, Lei Jiang. Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes[J]. Nano-Micro Letters, 2024, 16(1): 140
    Download Citation