• Infrared and Laser Engineering
  • Vol. 51, Issue 7, 20210499 (2022)
Zichao Wang, Huiying Fan, Yuanping Xie, Hui Luo, and Xudong Yu
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20210499 Cite this Article
    Zichao Wang, Huiying Fan, Yuanping Xie, Hui Luo, Xudong Yu. System-level calibration method for complex error coefficients of strapdown inertial navigation system[J]. Infrared and Laser Engineering, 2022, 51(7): 20210499 Copy Citation Text show less

    Abstract

    The establishment of a complex error model of strapdown inertial navigation system is researched, and a new system-level calibration method isproposed, which includes the inner level arm parameters of the accelerometer and temperature error coefficients. The method is based on the 45-dimensional Kalman filter to identify and estimate the error parameters, and the temperature change in the calibration process is controlled by a temperature control test chamber. Simulation experiments show that this method can simultaneously calibrate the constant drift, scale factor error, installation error of the laser gyroscope and accelerometer, as well as the inner level arm parameters and temperature coefficients of the accelerometer. The results of the navigation experiment show that when using the calibration parameters compensated for multiple error sources, the maximum positioning error of the navigation for 10 h is 0.6 n miles. The navigation accuracy is improved by 37.5% compared to that without compensation.
    $ \left\{ δax=dωibbdt×rx+ωibb×ωibb×rxδay=dωibbdt×ry+ωibb×ωibb×ryδaz=dωibbdt×rz+ωibb×ωibb×rz \right. $(1)

    View in Article

    $ \left[ {δaxδayδaz} \right] = \left[ {([ωibb×]2)11000([ωibb×]2)22000([ωibb×]2)33} \right]\left[ {rxryrz} \right] $(2)

    View in Article

    $ [δfxbδfybδfzb]=[BaxBayBaz]+[ΔTaxTBaxΔTayTBayΔTazTBaz] + [δaxδayδaz]+[δKaxδMaxyδMaxzδMayxδKayδMayzδMazxδMazyδKaz][fxbfybfzb]+[ΔTaxTKaxΔTayTMaxyΔTazTMaxzΔTaxTMayxΔTayTKayΔTazTMayzΔTaxTMazxΔTayTMazyΔTazTKaz][fxbfybfzb] $(3)

    View in Article

    $ \left[ {δωibxbδωibybδωibzb} \right] = \left[ {BgxBgyBgz} \right] + \left[ {δKgx00δMgyxδKgy0δMgzxδMgzyδKgz} \right]\left[ {ωibxbωibybωibzb} \right] $(4)

    View in Article

    $ϕ˙=ϕ×ωinn+δωinnCbn([δKg]+[δMg])ωibbBgnδV˙n=ϕn×fn+Cbn([δKa]+T[TKa]+[δMa]+T[TMa])fb+δVn×(2ωien+ωenn)+Vn×(2δωien+δωenn)+Ban+TTBan+δaδL˙=δVNRN+hδhVN(RN+h)2δλ˙=δVERE+hsecL+δLVERE+htanLsecLδhVEsecL(RE+h)2δh˙=δVD $(5)

    View in Article

    $ \dot X = FX + W(t) $(6)

    View in Article

    $ Missing \end{array} \ δKgyδMgzyδKgzδKaxδMayxδMazxδMaxy \ δKayδMazyδMaxzδMayzδKazTBaxTBay \ { {TBazTKaxTKayTKazTMayxTMazxTMaxy} } \ \left.TMazyTMaxzTMayzrxryrz\right]^{\rm T}\[-10pt] \end{array} $(7)

    View in Article

    $ Z = HX + v(t) $(8)

    View in Article

    $ Z = {\left[ {δVNδVEδVDδLδλδh} \right]^{\rm {T}}} $(9)

    View in Article

    $ H = {\left[ {03×3I3×303×303×3603×303×3I3×303×36} \right]_{6 \times 45}} $(10)

    View in Article

    Zichao Wang, Huiying Fan, Yuanping Xie, Hui Luo, Xudong Yu. System-level calibration method for complex error coefficients of strapdown inertial navigation system[J]. Infrared and Laser Engineering, 2022, 51(7): 20210499
    Download Citation