• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1700004 (2023)
Qiang Song1, Liang Wang1, Xiaoyin Zhang2, Yan Liu2..., Jing Zhang2 and Xiangfeng Kong2,*|Show fewer author(s)
Author Affiliations
  • 1College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266000, Shandong , China
  • 2Institute of Marine Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266000, Shandong , China
  • show less
    DOI: 10.3788/LOP221976 Cite this Article Set citation alerts
    Qiang Song, Liang Wang, Xiaoyin Zhang, Yan Liu, Jing Zhang, Xiangfeng Kong. Research Progress of Optical Fiber Sensors Based on Novel Fluorescent Materials: Dissolved Oxygen, pH, and Carbon Dioxide[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700004 Copy Citation Text show less
    Schematic diagram of fluorescence excitation
    Fig. 1. Schematic diagram of fluorescence excitation
    Basic structure and working principle of fluorescent optical fiber sensing system
    Fig. 2. Basic structure and working principle of fluorescent optical fiber sensing system
    Detection principle of dissolved oxygen optical fiber sensor[16].(a) Schematic diagram of evanescent wave generation; (b) schematic diagram of dissolved oxygen detection process; (c) schematic diagram of instrumental setup and flow cell design
    Fig. 3. Detection principle of dissolved oxygen optical fiber sensor[16].(a) Schematic diagram of evanescent wave generation; (b) schematic diagram of dissolved oxygen detection process; (c) schematic diagram of instrumental setup and flow cell design
    Schematic diagram of luminescence process of lanthanide metal ions[26]
    Fig. 4. Schematic diagram of luminescence process of lanthanide metal ions[26]
    Crystal structures[27].(a) Crystal structure of EuNDC; (b) tetrahedral crystal structure; (c) octahedral crystal structure
    Fig. 5. Crystal structures[27].(a) Crystal structure of EuNDC; (b) tetrahedral crystal structure; (c) octahedral crystal structure
    Upper: pH responsive DAOTA dyes 1a and 1b in protonated form and reference DMQA dye 2; bottom: with light emitting diode (LED) light source, optical fiber connector, photodiode/sensor point and optical fiber spectrometer detector[40]
    Fig. 6. Upper: pH responsive DAOTA dyes 1a and 1b in protonated form and reference DMQA dye 2; bottom: with light emitting diode (LED) light source, optical fiber connector, photodiode/sensor point and optical fiber spectrometer detector[40]
    Crystal structure and PXRD spectra[44].(a) Crystal structure of Tb-MOF; (b) PXRD patterns of as-synthesized Eu0.034Tb0.966-NMOF and Eu0.034Tb0.966-NMOF soaked in water with pH values of 3.00 and 11.00, and simulated Tb-MOF from X-ray single structure
    Fig. 7. Crystal structure and PXRD spectra[44].(a) Crystal structure of Tb-MOF; (b) PXRD patterns of as-synthesized Eu0.034Tb0.966-NMOF and Eu0.034Tb0.966-NMOF soaked in water with pH values of 3.00 and 11.00, and simulated Tb-MOF from X-ray single structure
    Diagram of preparation process of CDs@UiO-66 (OH)2 using solvent-free method[47]
    Fig. 8. Diagram of preparation process of CDs@UiO-66 (OH)2 using solvent-free method47
    Spatial topology and fluorescence emission spectra[48].(a) Spatial topological structure of Zr-TCPBP; (b) fluorescence emission spectra of Zr-TCPBP in aqueous solution with pH of 1.10-6.70
    Fig. 9. Spatial topology and fluorescence emission spectra[48].(a) Spatial topological structure of Zr-TCPBP; (b) fluorescence emission spectra of Zr-TCPBP in aqueous solution with pH of 1.10-6.70
    Schematic diagram of pH detection with LMOFl and γ-Fe2O3@LMOF1[49]
    Fig. 10. Schematic diagram of pH detection with LMOFl and γ-Fe2O3@LMOF1[49]
    Schematic diagram of pH response of MOF/PC materials[50]
    Fig. 11. Schematic diagram of pH response of MOF/PC materials[50]
    Scheme for synthesis of UIO-66-ONa by Schiff Base reaction[63]
    Fig. 12. Scheme for synthesis of UIO-66-ONa by Schiff Base reaction[63
    Sensor typeFluorescent sensitive materialLinear concentration rangeSensitivityResponse timeReference
    DOPdTFPP0-40 mg/L21.700 (I0/I10011
    DOPdTCPP0-40 mg/L7.400 (I0/I10011
    DOPtTFPP0-40 mg/L6.500 (I0/I10011
    DOPtOEP0-40 mg/L9.200 (I0/I10011
    DOPtEEP0-40 mg/L0.4 s12
    DOPtTFPP0-15 mg/L10 s13
    DO[Ru(bpy)32+0-100%1.408 (I0/I10012 s16
    DORu (DPP)3Cl20-15 mg/L18
    DOTris(2,20-bipyridyl) ruthenium (Ⅱ)5-15 mg/L3.340 (I0/I10088 s20
    DODichlorotris (1,10-phenanthroline) Ruthenium (Ⅱ)0-44 mg/L7 min22
    O2EuNDC0-1.0 p O2 atm10 s29
    O2PEA2SnI450×10-6-5%10 s34
    Table 1. Summary of fluorescent dissolved oxygen optical fiber sensing research
    Sensor typeFluorescent sensitive materialApplicable pH rangeSensitivityResponse timeReference
    pHDAOTA3.80-6.800.251 signal units per pH8 s40
    pHDLF-PEGDA3.79-9.550.680 signal units per pH43
    pHEu0.034Tb0.966-NMOFs3.00-7.0044
    pH{[Cd1.5(EDDA)]·(H3O)(H2O)3n2.00-11.5045
    pHZr-TCPBP1.10-6.7048
    pHLMOF13.00-7.0049
    pHMOF/PC3.00-7.0050
    pHDMF-Tb-Phen0.20-11.0151
    pHCdSe/ZnS4.00-12.000.500 pH unit52
    pHCR-ANPs1.00-7.007.950 Counts/pH53
    9.00-12.005.050 Counts/pH15 s
    pH

    Nitrogen-doped carbon dots

    (N-CDs)

    2.00-3.9215 s54
    8.00-13.0215 s
    Table 2. Summary of fluorescent pH optical fiber sensing research
    Sensor typeFluorescent sensitive materialLinear concentration rangeSensitivityResponse timeReference
    CO2α-naphtholphthalein in polyIBM0-100%100 (I100/I023 s58
    CO2TPPS20%-100%83 s59
    CO2Phenol red0-100%144 (I100/I020 s60
    CO2UIO-66-ONa63
    CO2PAAChl625×10-664
    CO2nanoZIF-80.2%-100%A few seconds67
    Table 3. Summary of fluorescent carbon dioxide optical fiber sensing research
    Qiang Song, Liang Wang, Xiaoyin Zhang, Yan Liu, Jing Zhang, Xiangfeng Kong. Research Progress of Optical Fiber Sensors Based on Novel Fluorescent Materials: Dissolved Oxygen, pH, and Carbon Dioxide[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700004
    Download Citation