• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1700004 (2023)
Qiang Song1, Liang Wang1, Xiaoyin Zhang2, Yan Liu2..., Jing Zhang2 and Xiangfeng Kong2,*|Show fewer author(s)
Author Affiliations
  • 1College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266000, Shandong , China
  • 2Institute of Marine Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266000, Shandong , China
  • show less
    DOI: 10.3788/LOP221976 Cite this Article Set citation alerts
    Qiang Song, Liang Wang, Xiaoyin Zhang, Yan Liu, Jing Zhang, Xiangfeng Kong. Research Progress of Optical Fiber Sensors Based on Novel Fluorescent Materials: Dissolved Oxygen, pH, and Carbon Dioxide[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700004 Copy Citation Text show less
    References

    [1] Zhou Z, Yao J L, Pang Z B et al. Application of ion chromatography analysis method to water quality analysis[J]. Journal of Ordnance Equipment Engineering, 37, 140-142(2016).

    [2] Zhang Y H. Hyphenated technology of gas chromatography[J]. Chinese Journal of Spectroscopy Laboratory, 30, 2836-2840(2013).

    [3] Orellana G, Haigh D. New trends in fiber-optic chemical and biological sensors[J]. Current Analytical Chemistry, 4, 273-295(2008).

    [4] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical and Bioanalytical Chemistry, 407, 3883-3897(2015).

    [5] Li S J[M]. Principle and application of polymer photpchemistry(2003).

    [6] Peterson J I, Goldstein S R, Fitzgerald R V et al. Fiber optic pH probe for physiological use[J]. Analytical Chemistry, 52, 864-869(1980).

    [7] Li W, Chen X, Zhuang Z X et al. On-line monitoring of dissolved oxygen in water by a fiber-optic chemical sensor based on fluorescence quenching[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 37, 226-230(2001).

    [8] Bailey R T, Cruickshank F R, Deans G et al. Characterization of a fluorescent Sol-gel encapsulated erythrosin B dissolved oxygen sensor[J]. Analytica Chimica Acta, 487, 101-108(2003).

    [9] Luo W, Abbas M E, Zhu L H et al. A simple fluorescent probe for the determination of dissolved oxygen based on the catalytic activation of oxygen by iron(Ⅱ) chelates[J]. Analytica Chimica Acta, 640, 63-67(2009).

    [10] Zhou D Q, Xiao S R, Xiao L. Development of fiber optic dissolved oxygen sensor based on fluorescence quenching[J]. Optics & Optoelectronic Technology, 11, 64-66, 85(2013).

    [11] Chu C S, Chuang C Y. Ratiometric optical fiber dissolved oxygen sensor based on metalloporphyrin and CdSe quantum dots embedded in Sol-gel matrix[J]. Journal of Luminescence, 167, 114-119(2015).

    [12] Zhang H L, Zhang Z G. Ratiometric sensor based on PtOEP-C6/poly (St-TFEMA) film for automatic dissolved oxygen content detection[J]. Sensors (Basel, Switzerland), 20, 6175(2020).

    [13] Wang H L, Chen D, Chen Y et al. Development of novel handheld optical fiber dissolved oxygen sensor and its applications[J]. Analytica Chimica Acta, 1200, 339587(2022).

    [14] Chuang H, Arnold M A. Linear calibration function for optical oxygen sensors based on quenching of ruthenium fluorescence[J]. Analytica Chimica Acta, 368, 83-89(1998).

    [15] Chu F H, Yang J J, Cai H W et al. Characterization of a dissolved oxygen sensor made of plastic optical fiber coated with ruthenium-incorporated solgel[J]. Applied Optics, 48, 338(2009).

    [16] Xiong Y, Tan J, Wang C J et al. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching[J]. Journal of Luminescence, 179, 581-587(2016).

    [17] Wu X D, Song L T, Li B et al. Synthesis, characterization, and oxygen sensing properties of Ru(Ⅱ) complex covalently grafted to mesoporous MCM-41[J]. Journal of Luminescence, 130, 374-379(2010).

    [18] Jiang Z K, Yu X S, Zhai S K et al. Ratiometric dissolved oxygen sensors based on ruthenium complex doped with silver nanoparticles[J]. Sensors, 17, 548(2017).

    [19] Hu S Q. Research on novel optical fiber sensors based on fluorescent nanomaterials[D](2021).

    [20] Wu Z H, Wang Q, Duan J X et al. Sensitivity improved tapered optical fiber sensor for dissolved oxygen detection[J]. Instrumentation Science & Technology, 49, 32-44(2021).

    [21] Santander P, Butter B, Oyarce E et al. Lignin-based adsorbent materials for metal ion removal from wastewater: a review[J]. Industrial Crops and Products, 167, 113510(2021).

    [22] Chu F H, Feng S, Bian Z L et al. Study of dissolved oxygen sensing characteristics of hydrogel optical fiber based on fluorescence quenching method[J]. Optik, 247, 168014(2021).

    [23] Chu H T, Yao D, Chen J Q et al. Research progress of metal-organic framework materials as fluorescent probes[J]. Materials Reports, 34, 13114-13120(2020).

    [24] Xiao J N. Design and synthesis of luminescent metal-organic frameworks and its chemical sense properties[D](2021).

    [25] Liang Y. Research on the application of antenna effect based on europium (Ⅲ) coordination polymer particles in pharmaceutical analysis[D](2021).

    [26] Utochnikova V V. The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds[J]. Coordination Chemistry Reviews, 398, 113006(2019).

    [27] Xia T F, Jiang L C, Zhang J et al. A fluorometric metal-organic framework oxygen sensor: from sensitive powder to portable optical fiber device[J]. Microporous and Mesoporous Materials, 305, 110396(2020).

    [28] Meng Z C, Zhang L, Huang Y F. Development of metal-organic framework composites in sample pretreatment[J]. Chinese Journal of Chromatography, 36, 216-221(2018).

    [29] Li J H, Lan T H, Chen Y et al. Research progress of MOF-based composites for gas adsorption and separation[J]. CIESC Journal, 72, 167-179(2021).

    [30] Liu H C, Zhang X, Cheng D et al. Optical fiber sensor for trace ethanol in water based on metal-organic frameworks[J]. Acta Optica Sinica, 41, 2328002(2021).

    [31] Fujimura M, Kusaka S, Masuda A et al. Trapping and releasing of oxygen in liquid by metal-organic framework with light and heat[J]. Small, 17, 2004351(2021).

    [32] Liu W Y, Chen F, Kong S Q et al. Synthesis, properties and application of all-inorganic perovskite quantum dots[J]. Chinese Journal of Luminescence, 41, 117-133(2020).

    [33] Shi L X, Xu C H, Fan Y et al. Determination of basic yellow in food by fluorescence colorimetry based on perovskite nanomaterials[J]. Journal of Food Safety & Quality, 12, 3658-3664(2021).

    [34] Cai S S, Ju Y Y, Wang Y M et al. Fast-response oxygen optical fiber sensor based on PEA2 SnI4 perovskite with extremely low limit of detection[J]. Advanced Science, 9, e2104708(2022).

    [35] Shehata N, Kandas I, Samir E. In-situ gold-ceria nanoparticles: superior optical fluorescence quenching sensor for dissolved oxygen[J]. Nanomaterials, 10, 314(2020).

    [36] Ben-David O, Shafir E, Gilath I et al. Simple absorption optical fiber pH sensor based on doped Sol-Gel cladding material[J]. Chemistry of Materials, 9, 2255-2257(1997).

    [37] Gao F, Wang L, Tang L J et al. A novel nano-sensor based on rhodamine-β-isothiocyanate-doped silica nanoparticle for pH measurement[J]. Microchimica Acta, 152, 131-135(2005).

    [38] Somers R C, Lanning R M, Snee P T et al. A nanocrystal-based ratiometric pH sensor for natural pH ranges[J]. Chemical Science, 3, 2980-2985(2012).

    [39] Wu L L, Huang C S, Jia N Q. Progress of fluorescent probes based on small organic molecules for pH value detection in biological systems[J]. Journal of Shanghai Normal University (Natural Sciences), 45, 742-747(2016).

    [40] Rosenberg M, Laursen B W, Frankær C G et al. A fluorescence intensity ratiometric fiber optics-based chemical sensor for monitoring pH[J]. Advanced Materials Technologies, 3, 1800205(2018).

    [41] Ahmad M, Hench L L. Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers[J]. Biosensors and Bioelectronics, 20, 1312-1319(2005).

    [42] Flora K, Brennan J D. Comparison of formats for the development of fiber-optic biosensors utilizing Sol-gel derived materials entrapping fluorescently-labelled protein[J]. Analyst, 124, 1455-1462(1999).

    [43] Zhao L S, Li G Q, Gan J L et al. Hydrogel optical fiber based ratiometric fluorescence sensor for highly sensitive pH detection[J]. Journal of Lightwave Technology, 39, 6653-6659(2021).

    [44] Xia T F, Zhu F L, Jiang K et al. A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF[J]. Dalton Transactions, 46, 7549-7555(2017).

    [45] Wang J, Li Y, Jiang M et al. A highly chemically stable metal-organic framework as a luminescent probe for the regenerable ratiometric sensing of pH[J]. Chemistry-A European Journal, 22, 13023-13027(2016).

    [46] Mohideen M I H, Xiao B, Wheatley P S et al. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework[J]. Nature Chemistry, 3, 304-310(2011).

    [47] Yao C X, Xu Y, Xia Z G. A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection[J]. Journal of Materials Chemistry C, 6, 4396-4399(2018).

    [48] Yang S L, Li G, Guo M Y et al. Positive cooperative protonation of a metal-organic framework: pH-responsive fluorescence and proton conduction[J]. Journal of the American Chemical Society, 143, 8838-8848(2021).

    [49] Zhang J, Gao L L, Zhang Z K et al. A highly selective luminescent logic gates probe based on Cd-LMOF for pH detection[J]. Microporous and Mesoporous Materials, 305, 110368(2020).

    [50] Yu T, Wang B, Yu L P. Dual-mode color-changing pH sensor based on fluorescent MOF embedded photonic crystal hydrogel[J]. Journal-Chinese Chemical Society Taipei, 69, 831-839(2022).

    [51] Qi Z W, Chen Y. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity[J]. Biosensors and Bioelectronics, 87, 236-241(2017).

    [52] Liu T, Wang W Q, Ding H et al. Smartphone-based hand-held optical fiber fluorescence sensor for on-site pH detection[J]. IEEE Sensors Journal, 19, 9441-9446(2019).

    [53] Islam S, Alshoaibi A. Thermally and optically functionalized Anatase nano-cavities based fiber optic pH sensor[J]. Materials Research Bulletin, 133, 111017(2021).

    [54] Cai Y, Wang M H, Liu M X et al. A portable optical fiber sensing platform based on fluorescent carbon dots for real-time pH detection[J]. Advanced Materials Interfaces, 9, 2101633(2022).

    [55] Chu C S, Lo Y L. Highly sensitive and linear optical fiber carbon dioxide sensor based on Sol-gel matrix doped with silica particles and HPTS[J]. Sensors and Actuators B: Chemical, 143, 205-210(2009).

    [56] Bao B, Melo L, Davies B et al. Detecting supercritical CO2 in brine at sequestration pressure with an optical fiber sensor[J]. Environmental Science & Technology, 47, 306-313(2013).

    [57] Wysokiński K, Napierała M, Stańczyk T et al. Study on the sensing coating of the optical fibre CO2 sensor[J]. Sensors, 15, 31888-31903(2015).

    [58] Chu C S, Hsieh M W. Optical fiber carbon dioxide sensor based on colorimetric change of α-naphtholphthalein and CIS/ZnS quantum dots incorporated with a polymer matrix[J]. Optical Materials Express, 9, 2937-2945(2019).

    [59] Liu L L, Morgan S P, Correia R et al. Multi-parameter optical fiber sensing of gaseous ammonia and carbon dioxide[J]. Journal of Lightwave Technology, 38, 2037-2045(2020).

    [60] Kumar D, Chu C S. A ratiometric optical dual sensor for the simultaneous detection of oxygen and carbon dioxide[J]. Sensors, 21, 4057(2021).

    [61] Yan Y Y, Li Y F, Wang J et al. A carbon dioxide responsive fluorescent system based on micellar transformation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, 128457(2022).

    [62] Hromadka J, Tokay B, Correia R et al. Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1[J]. Sensors and Actuators B: Chemical, 255, 2483-2494(2018).

    [63] Tang Y L, Chen J M, Wu H F et al. A highly fluorescent post-modified metal organic framework probe for selective, reversible and rapid carbon dioxide detection[J]. Dyes and Pigments, 172, 107798(2019).

    [64] Hamer M, Lázaro-Martínez J M, Rezzano I N. Fluorescent responsive chlorophyllide-hydrogel for carbon dioxide detection[J]. Sensors and Actuators B: Chemical, 237, 905-911(2016).

    [65] Mishra R K, Vijayakumar S, Mal A et al. Bimodal detection of carbon dioxide using fluorescent molecular aggregates[J]. Chemical Communications, 55, 6046-6049(2019).

    [66] Li H J, Su X Y, Bai C H et al. Detection of carbon dioxide with a novel HPTS/NiFe-LDH nanocomposite[J]. Sensors and Actuators B: Chemical, 225, 109-114(2016).

    [67] Chocarro-Ruiz B, Pérez-Carvajal J, Avci C et al. A CO2 optical sensor based on self-assembled metal-organic framework nanoparticles[J]. Journal of Materials Chemistry A, 6, 13171-13177(2018).

    [68] Chu H W, Zhao S Z, Yang K J et al. Advancement in preparation and nonlinear optical properties of zeolitic imidazolate frameworks[J]. Chinese Journal of Lasers, 48, 1203001(2021).

    Qiang Song, Liang Wang, Xiaoyin Zhang, Yan Liu, Jing Zhang, Xiangfeng Kong. Research Progress of Optical Fiber Sensors Based on Novel Fluorescent Materials: Dissolved Oxygen, pH, and Carbon Dioxide[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700004
    Download Citation