• Spacecraft Recovery & Remote Sensing
  • Vol. 45, Issue 2, 1 (2024)
Shan JIA1,3,4, Rujie HU1,2, Xianghua ZHOU1, Shaoyang LIU1..., Mingyang WU1 and Jinbao CHEN1,3,4|Show fewer author(s)
Author Affiliations
  • 1Academy of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • 2Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
  • 3Laboratory of Aerospace Entry, Descent and Landing Technology, Nanjing 211106, China
  • 4Key Laboratory of Deep Space Star Catalog Detection Mechanism Technology, Ministry of Industry and Information Technology, Nanjing 211106, China
  • show less
    DOI: 10.3969/j.issn.1009-8518.2024.02.001 Cite this Article
    Shan JIA, Rujie HU, Xianghua ZHOU, Shaoyang LIU, Mingyang WU, Jinbao CHEN. Design and Analysis of a New Reusable Lander[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 1 Copy Citation Text show less

    Abstract

    To improve the shortcomings of the current landing cushion device that requires high landing terrain and is not reusable, a reusable four-legged lander based on a bionic structure is designed with reference to the composition of insect landing leg structures in nature. The support leg adopts the composition of “rigid body control thigh structure plus circular arc structure leg structure”, using a friction brake as a design method for a cushioning and energy absorbing device, which makes the landing impact load as thermal energy by friction work. The friction brake is applied to dissipate the landing impact load in the form of thermal energy to achieve cushion energy absorption. The D-H parametric method is applied to derive the chi-square matrix transformation of the support leg, and the forward and reverse kinematics analysis of the support leg is carried out for the bionic leg type cushioning structure. The theoretical model of the support leg is established and dynamics simulation is performed. The result shows that the reusable lander has good landing buffer performance and can provide a feasible solution for China’s subsequent deep space exploration missions.
    $_i^{i-1}\boldsymbol{T}=\left[cosθisinθi0ai1sinθicosαi1cosθicosαi1sinαi1disinαi1sinθisinαi1cosθisinαi1cosαi1dicosαi10001\right]$(1)

    View in Article

    $ {}_1^0{\boldsymbol{T}} = \left[ {cosθABsinθAB00sinθABcosθAB0000100001} \right] $(2)

    View in Article

    $ {}_2^1{\boldsymbol{T}} = \left[ {cosθBDsinθBD0L1sinθBDcosθBD0000100001} \right] $(3)

    View in Article

    $ {}_3^2{\boldsymbol{T}} = \left[ {100L2010000100001} \right] $(4)

    View in Article

    $ {x_{i - 1}} = {}_i^{i - 1}{\boldsymbol{T}}{x_i} $(5)

    View in Article

    $ _i^0\boldsymbol{T}= _0^1 \boldsymbol{T}_2^1\boldsymbol{T}\cdots\,_i^{i-1} \boldsymbol{T} $(6)

    View in Article

    $ 30\boldsymbolT=10\boldsymbolT21\boldsymbolT32\boldsymbolT=[cos(θAB+θBD)sin(θAB+θBD)0L1cosθABsin(θAB+θBD)cos(θAB+θBD)0L1sinθAB00100001][100L2010000100001]=[cos(θAB+θBD)sin(θAB+θBD)0cos(θAB+θBD)L2+cosθABL1sin(θAB+θBD)cos(θAB+θBD)0sin(θAB+θBD)L2+sinθABL100100001] $(7)

    View in Article

    $ {[{}_1^0{\boldsymbol{T}}({\theta _{\rm{AB}}})]^{ - 1}}{}_3^0{\boldsymbol{T}} = {}_2^1{\boldsymbol{T}}({\theta _{\rm{BD}}})_3^2{\boldsymbol{T}}(0) $(8)

    View in Article

    $ [cosθABsinθAB00sinθABcosθAB0000100001]30\boldsymbolT=21\boldsymbolT(θBD)32\boldsymbolT(0)=[R1R20pxR3R40py001pz0001]=[cosθBDsinθBD0L1sinθBDcosθBD0000100001][100L2010000100001]=[cosθBDsinθBD0L2cosθBD+L1sinθBDcosθBD0sinθBDL200100001] $(9)

    View in Article

    $\left.R1=cos(θAB+θBD)cosθAB+sin(θAB+θBD)sinθABR2=sin(θAB+θBD)cosθAB+cos(θAB+θBD)sinθABR3=cos(θAB+θBD)sinθAB+sin(θAB+θBD)cosθABR4=sin(θAB+θBD)sinθAB+cos(θAB+θBD)cosθAB\right\} $()

    View in Article

    $ px=cos(θAB+θBD)cosθABL2+sin(θAB+θBD)sinθABL2+L1py=(cosθAB+θBD)sinθAB+sin(θAB+θBD)cosθABL2pz=0} $()

    View in Article

    $ ^1\boldsymbol{P}_{\text{C}_1}=l_1\hat{\boldsymbol{X}}_1=\left[l100\right] $(10)

    View in Article

    $ {}^2{{\boldsymbol{P}}_{{{\text{C}}_2}}} = {l_2}{\hat{\boldsymbol{ X}}_2} = \left[ {l200} \right] $(11)

    View in Article

    $ {}^{{{\text{C}}_1}}{{\boldsymbol{I}}_1} = 0 $(12)

    View in Article

    $ {}^{{{\text{C}}_2}}{{\boldsymbol{I}}_2} = 0 $(13)

    View in Article

    $ {{\boldsymbol{f}}_3} = \left[ {F00} \right] $(14)

    View in Article

    $ n_3=0 $(15)

    View in Article

    $ \boldsymbol{\mathit{\omega}}_0=0 $(16)

    View in Article

    $ \dot{\boldsymbol{\mathit{\omega}}}_0=0 $(17)

    View in Article

    $ ^0\boldsymbol{\dot v}_0=g_{\text{n}}\hat{\boldsymbol{Y}}_0=\left[0gn0\right] $(18)

    View in Article

    $ _2^1\boldsymbol{R}=\left[cosθBDsinθBD0sinθBDcosθBD0001\right] $(19)

    View in Article

    $ _1^2\boldsymbol{R}=\left[cosθBDsinθBD0sinθBDcosθBD0001\right] $(20)

    View in Article

    $ {}^1{{\text{ω}} _1} = {}_0^1{{\boldsymbol{R}}}{{\;}^{0}{\omega}} _0 + {\theta _{\rm{AB}}}{}^1{\hat {\boldsymbol{Z}}_1} = \left[ {00θAB} \right] $(21)

    View in Article

    $ { }^{1} {\text{ω}}_{1}={ }_{0}^{1} \boldsymbol{R}{\;}^{0} \omega_{0}+{ }_{0}^{1} \boldsymbol{R}{\;}^{0} \omega_{0} \times \theta_{\mathrm{AB}}{ }^{1} \hat{\boldsymbol{Z}}_{1}+\theta_{\mathrm{AB}}{ }^{1} \hat{\boldsymbol{Z}}_{1}=\left[00θAB\right]$(22)

    View in Article

    $ 1\boldsymbolv˙1=01\boldsymbolR[0ω˙0×0\boldsymbolP1+0ω0×(0ω0×0\boldsymbolP1)+0\boldsymbolv˙0]=[cosθABsinθAB0sinθABcosθAB0001][0gn0]=[gnsinθABgncosθAB0]$(23)

    View in Article

    $ 1\boldsymbolv˙C1=1ω˙1×1\boldsymbolPC1+1ω1×(1ω1×1\boldsymbolPC1)+1\boldsymbolv˙1=[00θ¨AB]×[l100]+[00θ˙AB]×([00θ˙AB]×[l100])+[gnsinθABgncosθAB0]=[l1θ˙AB2+gnsinθABl1θ¨AB+gncosθAB0] $(24)

    View in Article

    $ ^{1}\boldsymbol{F}_{1}=m_{1}{}^{1}\boldsymbol{\dot v}_{{\mathrm{C}}_{1}}=[m1l1θ˙AB2+m1gnsinθABm1l1θ¨AB+m1gncosθAB0]$(25)

    View in Article

    $ ^1{\boldsymbol{N}}_1=^{\text{C}_1} {{\boldsymbol{I}}}_1{}^1\dot{\boldsymbol{\omega}}_{\text{1}}+^1\boldsymbol{\omega}_{\text{1}}\times^{\text{C}_1} {{\boldsymbol{I}}}_1{}^1\boldsymbol{\omega}_{\text{1}}=0 $(26)

    View in Article

    $ ^2{\text{ω}}_2={}_1^2\boldsymbol{R}^1{\text{ω}}_1+\dot{\theta}_\mathrm{AB}{}^2\hat{\boldsymbol{Z}}_2=[cosθBDsinθBD0sinθBDcosθBD0001][00θ˙AB]+[00θ˙BD]=[00θ˙AB+θ˙BD]$(27)

    View in Article

    $ 2ω˙2=12\boldsymbolR1ω˙1+12\boldsymbolR1ω˙1×θ˙BD2\boldsymbolZ^2+θ¨BD2\boldsymbolZ^2=[cosθBDsinθBD0sinθBDcosθBD0001][00θ¨AB]+[cosθBDsinθBD0sinθBDcosθBD0001][00θ˙AB]×[00θ˙BD]+[00θ¨BD]=[00θ¨AB+θ¨BD]$(28)

    View in Article

    $ 2\boldsymbolv˙2=12\boldsymbolR[1ω˙1×1\boldsymbolP2+1ω˙1×(1ω˙1×1\boldsymbolP2)+1\boldsymbolv˙1]=[cosθBDsinθBD0sinθBDcosθBD0001][00θ¨AB]×[l100]+[00θ˙AB]×([00θ˙AB]×[l100])+[gnsinθABgncosθAB0]=[l1θ¨ABsinθBDl1θ˙AB2cosθBD+gnsin(θAB+θBD)l1θ¨ABcosθBD+l1θ˙AB2sinθBD+gncos(θAB+θBD)0] $(29)

    View in Article

    $ 2\boldsymbolv˙C2=2ω˙2×2\boldsymbolPC2+2ω˙2×(2ω˙2×2\boldsymbolPC2)+2\boldsymbolv˙2=[0l2(θ¨AB+θ¨BD)0]+[l2(θ˙AB+θ˙BD)200]+[l1θ¨ABsinθBDl1θ˙AB2cosθBD+gnsin(θAB+θBD)l1θ¨ABcosθBD+l1θ˙AB2sinθBD+gncos(θAB+θBD)0]$(30)

    View in Article

    $ ^2\boldsymbol{F}_2=m_2^2\dot{\boldsymbol{v}}_{{\rm{C}}_2}=[m2l1θ¨ABsinθBDm2l1θ˙AB2cosθBD+m2gnsin(θAB+θBD)m2l2(θ˙AB+θ˙BD)2m2l1θ¨ABcosθBD+m2l1θ˙AB2sinθBD+m2gncos(θAB+θBD)+m2l2(θ¨AB+θ¨BD)0] $(31)

    View in Article

    $ ^2\boldsymbol{N}_2={}^{{\rm{C}}_2}\boldsymbol{I}_2{}^2{\text{ω}}_2+{}^2{\text{ω}}_2\times{}^{{\rm{C}}_2}\boldsymbol{I}_2{}^2{\text{ω}}_2=0 $(32)

    View in Article

    $ 2\boldsymbolf2=32\boldsymbolR3\boldsymbolf3+2\boldsymbolF2=[m2l1θ¨ABsinθBDm2l1θ˙AB2cosθBD+m2gnsin(θAB+θBD)m2l2(θ˙AB+θ˙BD)2FcosθBDm2l1θ¨ABcosθBD+m2l1θ˙AB2sinθBD+m2gncos(θAB+θBD)+m2l2(θ¨AB+θ¨BD)FsinθBD0]$(33)

    View in Article

    $^2\boldsymbol{n}_2=[00m2l1l2θ¨ABcosθBD+m2l1l2θ˙AB2sinθBD+m2l2gncos(θAB+θBD)+m2l22(θ¨AB+θ¨BD)Fl2sinθBD] $(34)

    View in Article

    $ 1\boldsymbolf1=21\boldsymbolR2\boldsymbolf2+1\boldsymbolF1=[cosθBDsinθBD0sinθBDcosθBD0001][m2[l1θ¨ABsinθBDl1θ˙AB2cosθBD+gnsin(θAB+θBD)l2(θ˙AB+θ˙BD)2]m2[l1θ¨ABcosθBD+l1θ˙AB2sinθBD+gncos(θAB+θBD)+l2(θ¨AB+θ¨BD)]0]+[m1l1θ˙AB2+m1gnsinθABm1l1θ¨AB+m1gncosθAB0]$(35)

    View in Article

    $ 1\boldsymboln1=[00m2l1l2θ¨ABcosθBD+m2l1l2θ˙AB2sinθBD+m2l2gncos(θAB+θBD)+m2l22(θ¨AB+θ¨BD)]+[00m1l12θ¨AB+m1l1gncosθAB]+[000m2l12θ¨ABm2l1l2(θ˙AB+θ˙BD)2sinθBD+m2l1gnsinθBDsin(θAB+θBD)+m2l1l2(θ¨AB+θ¨BD)cosθBD+m2l1gncosθBDcos(θAB+θBD)] $(36)

    View in Article

    $ τ1=m2l22(θ¨AB+θ¨BD)+m2l1l2(2θ¨AB+θ¨BD)+(m1+m2)l12θ¨ABm2l1l2θ˙AB2sinθBD2m2l1l2θ˙ABθ˙2sinθBD+m2l2gncos(θAB+θBD)+(m1+m2)l1gncosθBD$(37)

    View in Article

    $ \tau_{2}=m_{2}l_{1}l_{2}\ddot{\theta}_{\mathrm{AB}}\cos\theta_{\mathrm{BD}}+m_{2}l_{1}l_{2}\dot{\theta}_{\mathrm{AB}}^{2}\sin\theta_{\mathrm{BD}}+m_{2}l_{2}g_{\rm{n}}\cos(\theta_{\mathrm{AB}}+\theta_{\mathrm{BD}})+m_{2}l_{2}^{2}(\ddot{\theta}_{\mathrm{AB}}+\ddot{\theta}_{\mathrm{BD}})$(38)

    View in Article