• Spacecraft Recovery & Remote Sensing
  • Vol. 45, Issue 2, 1 (2024)
Shan JIA1,3,4, Rujie HU1,2, Xianghua ZHOU1, Shaoyang LIU1..., Mingyang WU1 and Jinbao CHEN1,3,4|Show fewer author(s)
Author Affiliations
  • 1Academy of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • 2Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
  • 3Laboratory of Aerospace Entry, Descent and Landing Technology, Nanjing 211106, China
  • 4Key Laboratory of Deep Space Star Catalog Detection Mechanism Technology, Ministry of Industry and Information Technology, Nanjing 211106, China
  • show less
    DOI: 10.3969/j.issn.1009-8518.2024.02.001 Cite this Article
    Shan JIA, Rujie HU, Xianghua ZHOU, Shaoyang LIU, Mingyang WU, Jinbao CHEN. Design and Analysis of a New Reusable Lander[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(2): 1 Copy Citation Text show less
    [in Chinese]
    Fig. 1. [in Chinese]
    [in Chinese]
    Fig. 2. [in Chinese]
    [in Chinese]
    Fig. 3. [in Chinese]
    [in Chinese]
    Fig. 4. [in Chinese]
    [in Chinese]
    Fig. 5. [in Chinese]
    [in Chinese]
    Fig. 6. [in Chinese]
    [in Chinese]
    Fig. 7. [in Chinese]
    [in Chinese]
    Fig. 8. [in Chinese]
    [in Chinese]
    Fig. 9. [in Chinese]
    [in Chinese]
    Fig. 10. [in Chinese]
    [in Chinese]
    Fig. 11. [in Chinese]
    [in Chinese]
    Fig. 12. [in Chinese]
    [in Chinese]
    Fig. 13. [in Chinese]
    [in Chinese]
    Fig. 14. [in Chinese]
    [in Chinese]
    Fig. 15. [in Chinese]
    [in Chinese]
    Fig. 16. [in Chinese]
    [in Chinese]
    Fig. 17. [in Chinese]
    [in Chinese]
    Fig. 18. [in Chinese]
    [in Chinese]
    Fig. 19. [in Chinese]
    i${\alpha _{i - 1}}$${a_{i - 1}}$${d_i}$$ {\theta} $
    1000${\theta _{\rm{AB}}}$
    20L10${\theta _{\rm{BD}}}$
    30L200
    Table 1. D-H parameter table of support leg mechanism
    构件1名称构件2名称运动副名称
    主体上横杆转动副
    主体下横杆转动副
    上横杆竖直杆转动副
    下横杆竖直杆转动副
    下横杆柔性腿固定副
    足垫柔性腿球铰
    上转轴下转轴移动副
    Table 2. Campaign sub-setting situation
    时间/s模型$ \boldsymbol{\mathit{f}}_{\mathrm{Bx}}/\text{N} $$ \boldsymbol{\mathit{f}}_{\mathrm{By}}/\text{N} $$ \boldsymbol{\mathit{f}}_{\mathrm{Dx}}/\text{N} $$ \boldsymbol{\mathit{f}}_{\mathrm{Dy}}/\text{N} $
    0.1理论模型−0.392 9780.362 9−585.272 3−0.067 6
    ADAMS−0.392 8780.363 0−585.272 3−0.067 6
    1.3理论模型−82.479 2774.953 1−584.030 5−16.771 6
    ADAMS−82.478 9774.952 9−583.901 6−17.293 1
    1.8理论模型−157.163 8760.479 3−580.699 4−31.557 4
    ADAMS−155.234 4757.234 8−578.239 4−32.342 3
    Table 3. Comparison table of parameters
    着陆模式工况坡度/rad横向速度/(m·s−1纵向速度/(m·s−1足垫距着陆面最小距离/m
    4腿同时着陆10030.03
    200.530.03
    30−0.530.03
    “2-2”着陆模式40.175030.03
    50.1750.530.03
    60.175−0.530.03
    “1-2-1”着陆模式70.175030.03
    80.1750.530.03
    90.175−0.530.03
    Table 4. Simulation conditions in ADAMS
    着陆模式工况出现峰值时刻/s本体加速度/(m·s2稳定时间/s最大过载
    4腿同时着陆10.01329.091≈0.610<3gn
    20.02028.429≈0.650<3gn
    30.02028.429≈0.650<3gn
    “2-2”着陆模式40.02054.468≈0.820<6gn
    0.12526.578<3gn
    50.02050.821≈0.850<6gn
    0.14332.920<4gn
    60.02066.104≈0.810<7gn
    0.12338.732<4gn
    “1-2-1”着陆模式70.0308.068≈0.650<1gn
    0.08320.570<3gn
    0.11052.961<6gn
    80.02010.736≈0.650<2gn
    0.82565.767<7gn
    0.10627.966<3gn
    90.01612.829≈0.550<13gn
    0.08020.890<3gn
    0.12029.062<3gn
    Table 5. Simulation results of landing
    参数名称数值
    抗弯强度/MPa1 646
    弹性模量/(104 MPa)11.76
    密度/(g·cm−34.5
    Table 6. Titanium alloy mechanical properties parameters