• Chinese Optics Letters
  • Vol. 23, Issue 2, 023001 (2025)
Fupeng Wang1,*, Ze Han1, Jianguo Zhang1, Jinghua Wu1, and Qiang Wang2
Author Affiliations
  • 1Faculty of Information Science and Engineering, Engineering Research Center of Advanced Marine Physical Instruments and Equipment (Ministry of Education), Optics and Optoelectronics Laboratory (Qingdao Key Laboratory), Ocean University of China, Qingdao 266100, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    DOI: 10.3788/COL202523.023001 Cite this Article Set citation alerts
    Fupeng Wang, Ze Han, Jianguo Zhang, Jinghua Wu, Qiang Wang, "Highly sensitive carbon dioxide detection based on enhanced photoacoustic spectroscopy with a thulium-doped fiber amplifier," Chin. Opt. Lett. 23, 023001 (2025) Copy Citation Text show less
    References

    [1] IPCC, .

    [2] R. Liang, F. Wang, Q. Xue et al. A Fourier-domain-based line shape recovery method used in direct absorption spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 275, 121153(2022).

    [3] J. M. Supple, E. A. Whittaker, W. Lenth. Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt., 33, 6294(1994).

    [4] N. Liu, L. Xu, S. Zhou et al. Simultaneous detection of multiple atmospheric components using an NIR and MIR laser hybrid gas sensing system. ACS Sens., 5, 3607(2020).

    [5] F. Wang, R. Liang, Q. Xue et al. A novel wavelength modulation spectroscopy gas sensing technique with an ultra-compressed wavelength scanning bandwidth. Spectrochim. Acta A Mol. Biomol., 280, 121561(2022).

    [6] J. Li, H. Deng, J. Sun et al. Simultaneous atmospheric CO, N2O and H2O detection using a single quantum cascade laser sensor based on dual-spectroscopy techniques. Sens. Actuators B Chem., 231, 723(2016).

    [7] N. Liu, L. Xu, J. Li. Self-calibrated wavelength modulation spectroscopy based on 2f/1f amplitude and integral area for trace gas sensing. Opt. Quantum Electron., 55, 22(2023).

    [8] F. Wang, J. Wu, Q. Wang et al. Self-calibrated method for WMS gas sensor immune to optical and electronic drift. IEEE Sens. J., 24, 21964(2024).

    [9] M. Gu, J. Chen, J. Mei et al. Open-path anti-pollution multi-pass cell-based TDLAS sensor for the online measurement of atmospheric H2O and CO2 fluxes. Opt. Express, 30, 43961(2022).

    [10] K. Krzempek, M. Jahjah, R. Lewicki et al. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl. Phys. B, 112, 461(2013).

    [11] K. Liu, L. Wang, T. Tan et al. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sens. Actuators B Chem., 220, 1000(2015).

    [12] P. Wang, C. Chen, Y. Wang et al. Improving measurement accuracy of CH4 and CO2 sensing system using passive locking achromatic multipass absorption cell. Sens. Actuators B Chem., 387, 133802(2023).

    [13] F. R. Vogel, L. Huang, D. Ernst et al. Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2. Atmos. Meas. Tech., 6, 301(2013).

    [14] A. Maity, S. Maithani, M. Pradhan. Cavity ring-down spectroscopy: recent technological advancements, techniques, and applications. Anal. Chem., 93, 388(2021).

    [15] E. R. Crosson. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys. B, 92, 403(2008).

    [16] Q. Ren, C. Chen, Y. Wang et al. A prototype of ppbv-level midinfrared CO2 sensor for potential application in deep-sea natural gas hydrate exploration. IEEE Trans. Instrum. Meas., 69, 7200(2020).

    [17] Z. Liu, C. Zheng, T. Zhang et al. Midinfrared sensor system based on tunable laser absorption spectroscopy for dissolved carbon dioxide analysis in the south China sea: system-level integration and deployment. Anal. Chem., 92, 8178(2020).

    [18] Z. Zhang, Z. Zang, J. Guo et al. High-temporal-resolution in situ sensor for oceanic CO2 isotope measurement enabling multidimensional isotope tracing analysis (R13C, R18O, and R17O) via laser absorption spectroscopy. Anal. Chem., 96, 1195(2024).

    [19] M. Hu, B. Chen, L. Yao et al. A fiber-integrated CRDS sensor for in-situ measurement of dissolved carbon dioxide in seawater. Sensors, 21, 6436(2021).

    [20] F. Wang, Y. Cheng, Q. Xue et al. Techniques to enhance the photoacoustic signal for trace gas sensing: a review. Sens. Actuators A Phys., 345, 113807(2022).

    [21] W. Chen, S. Qiao, Y. He et al. Quasi-distributed quartz enhanced photoacoustic spectroscopy sensing based on hollow waveguide micropores. Opt. Lett., 49, 2765(2024).

    [22] F. Wang, L. Fu, J. Wu et al. A compact photoacoustic detector for trace acetylene based on 3D-printed differential Helmholtz resonators. IEEE Sens. J., 23, 27207(2023).

    [23] X. Yin, L. Dong, H. Wu et al. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser. Sens. Actuators B Chem., 247, 329(2017).

    [24] S. Xu, Q. Wang, Z. Zhu et al. Photoacoustic spectroscopy based on vertical cruciform multi-stepped photoacoustic cell achieving ppb-level acetylene detection. Sens. Actuators B Chem., 418, 136313(2024).

    [25] Q. Huang, Y. Wei, J. Li. Simultaneous detection of multiple gases using multi-resonance photoacoustic spectroscopy. Sens. Actuators B Chem., 369, 132234(2022).

    [26] C. Zhang, Y. He, S. Qiao et al. High-sensitivity trace gas detection based on differential Helmholtz photoacoustic cell with dense spot pattern. Photoacoustics, 38, 100634(2024).

    [27] C. Zhang, S. Qiao, Y. He et al. Trace gas sensor based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell and a power amplified diode laser. Opt. Express, 32, 848(2024).

    [28] Z. Wang, Y. Zhang, X. Huang et al. Miniature mid-infrared photoacoustic gas sensor for detecting dissolved carbon dioxide in seawater. Sens. Actuators B Chem., 405, 135370(2024).

    [29] F. Wang, J. Wu, Y. Cheng et al. Simultaneous detection of greenhouse gases CH4 and CO2 based on a dual differential photoacoustic spectroscopy system. Opt. Express, 31, 33898(2023).

    [30] H. Zhang, W. Jin, M. Hu et al. Investigation and optimization of a line-locked quartz enhanced spectrophone for rapid carbon dioxide measurement. Sensors, 21, 5225(2021).

    [31] P. Peterka, B. Faure, W. Blanc et al. Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Opt. Quantum Electron., 36, 201(2004).

    [32] M. Lenski, T. Heuermann, M. Gebhardt et al. Inband-pumped, high-power thulium-doped fiber amplifiers for an ultrafast pulsed operation. Opt. Express, 30, 44270(2022).

    [33] C. Wang, L. Lin, X. Zeng et al. Ppb-level CO2 sensor based on a miniature multipass cell with eight-petaled spot pattern. Microwave Opt. Technol. Lett., 66, e34118(2024).

    [34] T. Laurila, H. Cattaneo, T. Poyhonen et al. Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser. Appl. Phys. B, 83, 285(2006).

    [35] Y. Li, G. Guan, Y. Lu et al. Highly sensitive near-infrared gas sensor system using a novel H-type resonance-enhanced multi-pass photoacoustic cell. Measurement, 220, 113380(2023).

    [36] L. Fu, P. Lu, Y. Pan et al. All-optical non-resonant photoacoustic spectroscopy for multicomponent gas detection based on aseismic photoacoustic cell. Photoacoustics, 34, 100571(2023).

    [37] Q. Wang, Z. Wang, J. Chang et al. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing. Opt. Lett., 42, 2114(2017).

    [38] S. Qiao, Y. He, H. Sun et al. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. Light Sci. Appl., 13, 100(2024).

    [39] F. Wang, Q. Xue, J. Chang et al. Wavelength scanning Q-switched fiber-ring laser intra-cavity QEPAS using a standard 32.76 kHz quartz tuning fork for acetylene detection. Opt. Laser Technol., 134, 106612(2021).

    [40] F. Chen, S. Jiang, H. Ho et al. Frequency-division-multiplexed multicomponent gas sensing with photothermal spectroscopy and a single NIR/MIR fiber-optic gas cell. Anal. Chem., 94, 13472(2022).

    [41] H. Sun, S. Qiao, Y. He et al. Highly sensitive CH4, C2H2 and CO simultaneous measurement LITES sensor based on multi-pass cell with overlapped spots pattern and QTFs with low resonant frequency. Opt. Express, 32, 28183(2024).

    [42] G. Zhang, M. Guo, X. Zhao et al. Miniaturized nonresonant photoacoustic gas analyzer for CO2 detection. Microwave Opt. Technol. Lett., 65, 1829(2023).

    [43] Z. Zhu, Z. Li, J. Liu et al. Methane and carbon dioxide mixed gas detection based on sphere-tube coupled photoacoustic cell. Opt. Commun., 527, 128977(2023).

    [44] L. Liu, H. Huan, A. Mandelis et al. Design and structural optimization of T-resonators for highly sensitive photoacoustic trace gas detection. Opt. Laser Technol., 148, 107695(2022).

    Fupeng Wang, Ze Han, Jianguo Zhang, Jinghua Wu, Qiang Wang, "Highly sensitive carbon dioxide detection based on enhanced photoacoustic spectroscopy with a thulium-doped fiber amplifier," Chin. Opt. Lett. 23, 023001 (2025)
    Download Citation