• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 2, 25101 (2023)
Weiwei Du1,2, Jing Tu3, Mingjun Qiu1,2, Shangyu Zhou1,2..., Yingwu Luo1, Wee-Liat Ong3,4,* and and Junjie Zhao1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Rd, Hangzhou 310027, People’s Republic of China
  • 2Institute of Zhejiang University—Quzhou, 78 Jiuhua Roulevard North, Quzhou, Zhejiang 324000, People’s Republic of China
  • 3ZJU-UIUC Institute, College of Energy Engineering, Zhejiang University, Haining, Jiaxing, Zhejiang 314400, People’s Republic of China
  • 4State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/acc5c1 Cite this Article
    Weiwei Du, Jing Tu, Mingjun Qiu, Shangyu Zhou, Yingwu Luo, Wee-Liat Ong, and Junjie Zhao. Temperature-mediated structural evolution of vapor–phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 25101 Copy Citation Text show less
    References

    [1] Colombo P, Mera G, Riedel R and Sorar Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics J. Am. Ceram. Soc. 93 1805–37

    [2] Barrios E and Zhai L 2020 A review of the evolution of the nanostructure of SiCN and SiOC polymer derived ceramics and the impact on mechanical properties Mol. Syst. Des. Eng. 5 1606–41

    [3] Greil P 2000 Polymer derived engineering ceramics Adv. Eng. Mater. 2 339–48

    [4] Wang K S, Unger J, Torrey J D, Flinn B D and Bordia R K 2014 Corrosion resistant polymer derived ceramic composite environmental barrier coatings J. Eur. Ceram. Soc. 34 3597–606

    [5] Riffard F, Joannet E, Buscail H, Rolland R and Perrier S 2017 Beneficial effect of a pre-ceramic polymer coating on the protection at 900 .C of a commercial AISI 304 stainless steel Oxid. Met. 88 211–20

    [6] Hasemann G, Baumann T, Dieck S, Rannabauer S and Krüger M 2015 Polymer-derived ceramics as innovative oxidation barrier coatings for Mo–Si–B alloys Metall. Mater. Trans. A 46 1455–60

    [7] Torrey J D and Bordia R K 2007 Phase and microstructural evolution in polymer-derived composite systems and coatings J. Mater. Res. 22 1959–66

    [8] Torrey J D and Bordia R K 2008 Processing of polymer-derived ceramic composite coatings on steel J. Am. Ceram. Soc. 91 41–45

    [9] Kraus T, Günthner M, Krenkel W and Motz G 2009 cBN particle filled SiCN precursor coatings Adv. Appl. Ceram. 108 476–82

    [10] Liu M-Y, Wang H and Wang Y 2007 Enhancing flow boiling and antifouling with nanometer titanium dioxide coating surfaces AIChE J. 53 1075–85

    [11] Szymanski W, Lipa S, Fortuniak W, Chojnowski J, Pospiech P, Mizerska U, Slomkowski S, Nyczyk-Malinowska A and Hasik M 2019 Silicon oxycarbide (SiOC) ceramic microspheres—structure and mechanical properties by nanoindentation studies Ceram. Int. 45 11946–54 Ceram. Soc. 80 2333–40

    [12] Torrey J D and Bordia R K 2008 Mechanical properties of polymer-derived ceramic composite coatings on steel J. Eur. Ceram. Soc. 28 253–7

    [13] Walter S, Soraru G D, Bréquel H and Enzo S 2002 Microstructural and mechanical characterization of sol gel-derived Si–O–C glasses J. Eur. Ceram. Soc. 22 2389–400

    [14] Renlund G M, Prochazka S and Doremus R H 1991 Silicon oxycarbide glasses: part II. structure and properties J. Mater. Res. 6 2723–34

    [15] Moysan C, Riedel R, Harshe R, Rouxel T and Augereau F 2007 Mechanical characterization of a polysiloxane-derived SiOC glass J. Eur. Ceram. Soc. 27 397–403

    [16] Sorar`u G D, Kundanati L, Santhosh B and Pugno N 2019 Influence of free carbon on the Young’s modulus and hardness of polymer-derived silicon oxycarbide glasses J. Am. Ceram. Soc. 102 907–13

    [17] Sorar`u G D, Dallapiccola E and D’Andrea G 1996 Mechanical characterization of sol–gel-derived silicon oxycarbide glasses J. Am. Ceram. Soc. 79 2074–80

    [18] Janakiraman N and Aldinger F 2009 Fabrication and characterization of fully dense Si–C–N ceramics from a poly(ureamethylvinyl)silazane precursor J. Eur. Ceram. Soc. 29 163–73

    [19] Goerke O, Feike E, Heine T, Trampert A and Schubert H 2004 Ceramic coatings processed by spraying of siloxane precursors (polymer-spraying) J. Eur. Ceram. Soc. 24 2141–7

    [20] Colombo P, Paulson T E and Pantano C G 1997 Synthesis of silicon carbide thin films with polycarbosilane (PCS) J. Am. GD2010 `u

    [21] Barroso G, Li Q, Bordia R K and Motz G 2019 Polymeric and ceramic silicon-based coatings—a review J. Mater. Chem. A 7 1936–63

    [22] O’Shaughnessy W S, Gao M L and Gleason K K 2006 Initiated chemical vapor deposition of trivinyltrimethylcyclotrisiloxane for biomaterial coatings Langmuir 22 7021–6

    [23] Zhao J J, Wang M H, Jebutu M S, Zhu M H and Gleason K K 2019 Fundamental nanoscale surface strategies for robustly controlling heterogeneous nucleation of calcium carbonate J. Mater. Chem. A 7 17242–7

    [24] Sojoudi H, McKinley G H and Gleason K K 2015 Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion Mater. Horiz. 2 91–99

    [25] O’Shaughnessy W S, Murthy S K, Edell D J and Gleason K K 2007 Stable biopassive insulation synthesized by initiated chemical vapor deposition of poly(1,3,5-trivinyltrimethylcyclotrisiloxane) Biomacromolecules 8 2564–70

    [26] Moon H et al 2015 Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics Nat. Mater. 14 628–35

    [27] Moreno-Couranjou M, Loyer F, Grysan P, Boscher N D and Choquet P 2020 Insights into switchable thermoresponsive copolymer layers by atmospheric pressure plasma-initiated chemical vapour deposition Plasma Process. Polym. 17 1900172

    [28] Oh M S, Jeon M, Jeong K, Ryu J and Im S G 2021 Synthesis of a stretchable but superhydrophobic polymer thin film with conformal coverage and optical transparency Chem. Mater. 33 1314–20

    [29] Trujillo N J, Wu Q G and Gleason K K 2010 Ultralow dielectric constant tetravinyltetramethylcyclotetrasiloxane films deposited by initiated chemical vapor deposition (iCVD) Adv. Funct. Mater. 20 607–16

    [30] Nguyen B, Dabir S, Tsotsis T and Gupta M 2019 Fabrication of hydrogen-selective silica membranes via pyrolysis of vapor deposited polymer films Ind. Eng. Chem. Res. 58 15190–8

    [31] Malen J A, Baheti K, Tong T, Zhao Y, Hudgings J A and Majumdar A 2011 Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance J. Heat Transfer 133 081601

    [32] Ong W-L, O’Brien E S, Dougherty P S M, Paley D W, Fred Higgs C, McGaughey A J H, Malen J A and Roy X 2017 Orientational order controls crystalline and amorphous thermal transport in superatomic crystals Nat. Mater. 16 83–88

    [33] Cahill D G 2004 Analysis of heat flow in layered structures for time-domain thermoreflectance Rev. Sci. Instrum. 75 5119–22

    [34] Chen N, Reeja-Jayan B, Liu A D, Lau J, Dunn B and Gleason K K 2016 iCVD cyclic polysiloxane and polysilazane as nanoscale thin-film electrolyte: synthesis and properties Macromol. Rapid Commun. 37 446–52

    [35] Aresta G, Palmans J, van de Sanden M C M and Creatore M 2012 Initiated-chemical vapor deposition of organosilicon layers: monomer adsorption, bulk growth, and process window definition J. Vac. Sci. Technol. A 30 041503

    [36] Grill A and Neumayer D A 2003 Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization J. Appl. Phys. 94 6697–707

    [37] Burkey D D and Gleason K K 2004 Organosilicon thin films deposited from cyclic and acyclic precursors using water as an oxidant J. Electrochem. Soc. 151 F105

    [38] Coclite A M, Ozaydin-Ince G, Palumbo F, Milella A and Gleason K K 2010 Single-chamber deposition of multilayer barriers by plasma enhanced and initiated chemical vapor deposition of organosilicones Plasma Process. Polym. 7 561–70

    [39] Zhao J J, Wang M H and Gleason K K 2017 Stabilizing the wettability of initiated chemical vapor deposited (iCVD) polydivinylbenzene thin films by thermal annealing Adv. Mater. Interfaces 4 1700270

    [40] Burkey D D and Gleason K K 2003 Structure and mechanical properties of thin films deposited from 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane and water J. Appl. Phys. 93 5143–50

    [41] Oh T and Choi C K 2010 Comparison between SiOC thin film by plasma enhance chemical vapor deposition and SiO2 thin film by Fourier transform infrared spectroscopy J. Korean Phys. Soc. 56 1150–5

    [42] ˇSimon I and McMahon H O 1953 Study of the structure of quartz, cristobalite, and vitreous silica by reflection in infrared J. Chem. Phys. 21 23–30

    [43] O’Hare L-A, Hynes A and Alexander M R 2007 A methodology for curve-fitting of the XPS Si 2p core level from thin siloxane coatings Surf. Interface Anal. 39 926–36

    [44] Roualdes S, Berjoan R and Durand J 2001 29Si NMR and Si2p XPS correlation in polysiloxane membranes prepared by plasma enhanced chemical vapor deposition Sep. Purif. Technol. 25 391–7

    [45] Thorpe M F 1985 Rigidity percolation Physics of Disordered Materials ed D Adler, H Fritzsche and S R Ovshinsky (Boston: Springer) pp 55–61

    [46] Phillips J C 1979 Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys J. Non-Cryst. Solids 34 153–81

    [47] Thorpe M F 1983 Continuous deformations in random networks J. Non-Cryst. Solids 57 355–70

    [48] QiuMJ,DuWW, LuoXY, ZhuSY, LuoYWandZhaoJJ 2022 Vapor-phase molecular doping in covalent organosiloxane network thin films via a Lewis acid–base interaction for enhanced mechanical properties ACS Appl. Mater. Interfaces 14 22719–27

    [49] Kim B J, Seong H, Shim H, Lee Y I and Im S G 2017 Initiated chemical vapor deposition of polymer films at high process temperature for the fabrication of organic/inorganic multilayer thin film encapsulation Adv. Eng. Mater. 19 1600870

    [50] Shen Y L 2019 Nanoindentation for testing material properties Handbook of Mechanics of Materials eds C H Hsueh, S Schmauder, C S Chen, K K Chawla, N Chawla, W Q Chen and Y Kagawa (Singapore: Springer) pp 1981–2012

    [51] D.hler G H, Dandoloff R and Bilz H 1980 A topological-dynamical model of amorphycity J. Non-Cryst. Solids 42 87–95

    [52] Ghossoub M G, Lee J-H, Baris O T, Cahill D G and Sinha S 2010 Percolation of thermal conductivity in amorphous fluorocarbons Phys. Rev. B 82 195441

    [53] He H and Thorpe M F 1985 Elastic properties of glasses Phys. Rev. Lett. 54 2107–10

    [54] Wen Q B, Yu Z J and Riedel R 2020 The fate and role of in situ formed carbon in polymer-derived ceramics Prog. Mater. Sci. 109 100623

    [55] Schütz A, Günthner M, Motz G, Grei.l O and Glatzel U 2012 Characterisation of novel precursor-derived ceramic coatings with glass filler particles on steel substrates Surf. Coat. Technol. 207 319–27

    [56] FengK,ChenY, DengPS,LiYY, ZhaoHX,Lu FG,LiRF, Huang J and Li Z G 2017 Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding J. Mater. Process. Technol. 243 82–91

    [57] Gridi O, Hamidouche Z M, Kermel C and Leriche A 2022 Mechanical and sandblasting erosion resistance characterization of chemical strengthened float glass Bol. Soc. Esp. Cerám. Vidr. 61 229–40

    [58] Fellah M, Laba.z M, Assala O, Iost A and Dekhil L 2013 Tribological behaviour of AISI 316L stainless steel for biomedical applications Tribol. Mater. Surf. Interfaces 7 135–49

    [59] Xu Y B, Wang H T, Tanaka Y, Shimono M and Yamazaki M 2007 Measurement of interfacial thermal resistance by periodic heating and a thermo-reflectance technique Mater. Trans. 48 148–50 ′

    [60] Sandell S, Maire J, Chávez-Angel E, Sotomayor Torres C M, Kristiansen H, Zhang Z L and He J Y 2020 Enhancement of thermal boundary conductance of metal–polymer system Nanomaterials 10 670

    [61] Jeong M, Freedman J P, Liang H J, Chow C-M, Sokalski V M, Bain J A and Malen J A 2016 Enhancement of thermal conductance at metal-dielectric interfaces using subnanometer metal adhesion layers Phys. Rev. Appl. 5 014009

    [62] Eom J-H, Kim Y-W, Kim K J and Seo W-S 2018 Improved electrical and thermal conductivities of polysiloxane-derived silicon oxycarbide ceramics by barium addition J. Eur. Ceram. Soc. 38 487–93

    [63] Mazo M A, Palencia C, Nistal A, Rubio F, Rubio J and Oteo J L 2012 Dense bulk silicon oxycarbide glasses obtained by spark plasma sintering J. Eur. Ceram. Soc. 32 3369–78

    [64] Gurlo A, Ionescu E, Riedel R, Clarke D R and Green D J 2016 The thermal conductivity of polymer-derived amorphous Si–O–C compounds and nano-composites J. Am. Ceram. Soc. 99 281–5

    [65] Cahill D G, Watson S K and Pohl R O 1992 Lower limit to the thermal conductivity of disordered crystals Phys. Rev. B 46 6131–40

    [66] Agne M T, Hanus R and Snyder G J 2018 Minimum thermal conductivity in the context of diffuson-mediated thermal transport Energy Environ. Sci. 11 609–16

    [67] Allen P B and Feldman J L 1993 Thermal conductivity of disordered harmonic solids Phys. Rev. B 48 12581–8

    [68] Aryana K, Stewart D A, Gaskins J T, Nag J, Read J C, Olson D H, Grobis M K and Hopkins P E 2021 Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides Nat. Commun. 12 2817

    Weiwei Du, Jing Tu, Mingjun Qiu, Shangyu Zhou, Yingwu Luo, Wee-Liat Ong, and Junjie Zhao. Temperature-mediated structural evolution of vapor–phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 25101
    Download Citation