[1] Zhang X M, Hu D X, Xu D P et al. Physical limitations of high-power, high-energy lasers[J]. Chinese Journal of Lasers, 48, 1201002(2021).
[2] Ye X, Jiang X D, Huang J et al. Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching[J]. Optics and Lasers in Engineering, 78, 48-54(2016).
[3] Du Y, Wu X, Zhu M P et al. Theoretical and experimental research on laser-induced damage of cylindrical subwavelength grating[J]. Optics Express, 23, 24296-24307(2015).
[4] Zhan J X, Wang W, Brauer J H et al. Spatial and spectral mode mapping of a dielectric nanodot by broadband interferometric homodyne scanning near-field spectroscopy[J]. Advanced Photonics, 2, 046004(2020).
[5] Ye X, Huang J, Geng F et al. High power laser antireflection subwavelength grating on fused silica by colloidal lithography[J]. Journal of Physics D: Applied Physics, 49, 265104(2016).
[6] Gallais L, Rumpel M, Moeller M et al. Investigation of laser damage of grating waveguide structures submitted to sub-picosecond pulses[J]. Applied Physics B, 126, 69(2020).
[7] ISO[S]. Laser and laser-related equipment-determination of laser-induced damage threshold of optical surface-part 1: 1-on-1 test: ISO11254-1-2000(2000).
[8] Yan R R, Su J H, Yang L H. Influence of pulsed laser output parameters on optical film damage threshold[J]. Optics & Optoelectronic Technology, 17, 34-40(2019).
[9] Du Y, Zhu M P, Liu Q et al. Laser-induced damage properties of subwavelength antireflective grating on fused silica[J]. Thin Solid Films, 567, 47-53(2014).
[10] Shi S K, Jiao H F, Ma B et al. Nanosecond pulse laser damage characteristics of sub-wavelength gratings polarizers[J]. Journal of Applied Optics, 40, 138-142(2019).
[11] Liu F, Jiao H F, Ma B et al. Influence of the surface and subsurface contaminants on laser-induced damage threshold of anti-reflection sub-wavelength structures working at 1064 nm[J]. Optics & Laser Technology, 127, 106144(2020).
[12] Teng Z Q, Sun Y, Kong F Y et al. Sub-wavelength microstructures on lithium triborate surface with high transmittance and laser-induced damage threshold at 1064 nm[J]. Optics & Laser Technology, 145, 107487(2022).
[13] Xu J Q, Su J H, Ge J M et al. Measurement uncertainty of laser-induced damage threshold of the optical thin films[J]. Infrared and Laser Engineering, 46, 0806007(2017).
[15] Hu J P, Wang J, Xin Z et al. Fluence uncertainties of laser damage threshold measurements[J]. Laser Physics, 24, 016003(2014).
[16] Li Z J, Yan L L, Zuo P et al. Development of tabletop femtosecond vacuum ultraviolet laser source based on four-wave mixing techniques[J]. Chinese Journal of Lasers, 48, 1201007(2021).
[17] Lü X M, Pan Y X, Jia Z C et al. Surface damage induced by a combined millisecond and nanosecond laser[J]. Applied Optics, 56, 5060-5067(2017).
[18] Wang H, Qi H J, Zhao J L et al. Transition from isolated submicrometer pits to integral ablation of HfO2 and SiO2 films under subpicosecond irradiation[J]. Optics Communications, 387, 214-222(2017).
[19] Cheng H P, Geng F, Liu M C et al. Spectral and laser-induced damage characteristics of atomic layer deposited SiO2 films on fused silica glass[J]. Spectroscopy and Spectral Analysis, 41, 2307-2313(2021).
[20] Jing X F, Shao J D, Zhang J C et al. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays[J]. Optics Express, 17, 24137-24152(2009).
[21] Clark C D, Buffington G D. On the probability summation model for laser-damage thresholds[J]. Journal of Biomedical Optics, 21, 015006(2016).