• Nano-Micro Letters
  • Vol. 16, Issue 1, 071 (2024)
Bingxin Qi1,†, Xinyue Hong1,†, Ying Jiang, Jing Shi..., Mingrui Zhang, Wen Yan* and Chao Lai**|Show fewer author(s)
Author Affiliations
  • School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01306-z Cite this Article
    Bingxin Qi, Xinyue Hong, Ying Jiang, Jing Shi, Mingrui Zhang, Wen Yan, Chao Lai. A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries[J]. Nano-Micro Letters, 2024, 16(1): 071 Copy Citation Text show less
    References

    [1] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011).

    [2] J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    [3] C.-X. Bi, M. Zhao, L.-P. Hou, Z.-X. Chen, X.-Q. Zhang et al., Anode material options toward 500 wh kg−1 lithium-sulfur batteries. Adv. Sci. 9, e2103910 (2022).

    [4] Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    [5] A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013).

    [6] Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016).

    [7] T. Liu, H. Hu, X. Ding, H. Yuan, C. Jin et al., 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 30, 346–366 (2020).

    [8] X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(20), 3040–3071 (2020).

    [9] Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 33, e2003666 (2021).

    [10] F. Zhao, J. Xue, W. Shao, H. Yu, W. Huang et al., Toward high-sulfur-content, high-performance lithium-sulfur batteries: review of materials and technologies. J. Energy Chem. 80, 625–657 (2023).

    [11] W. Yan, J. Wei, T. Chen, L. Duan, L. Wang et al., Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 80, 105510 (2021).

    [12] W. Yan, K.-Y. Yan, G.-C. Kuang, Z. Jin, Fluorinated quinone derived organosulfur copolymer cathodes for long-cycling, thermostable and flexible lithium–sulfur batteries. Chem. Eng. J. 424, 130316 (2021).

    [13] L. Fan, M. Li, X. Li, W. Xiao, Z. Chen et al., Interlayer material selection for lithium-sulfur batteries. Joule 3(2), 361–386 (2019).

    [14] M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei et al., Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59, 12636–12652 (2020).

    [15] Y. Zhong, P. Huang, W. Yan, Z. Su, C. Sun et al., Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte interface for long-cycling lithium metal anodes. Adv. Funct. Mater. 32(9), 2110347 (2022).

    [16] M. Jiang, Z. Zhang, B. Tang, T. Dong, H. Xu et al., Polymer electrolytes for Li-S batteries: polymeric fundamentals and performance optimization. J. Energy Chem. 58, 300–317 (2021).

    [17] W.-J. Chen, B.-Q. Li, C.-X. Zhao, M. Zhao, T.-Q. Yuan et al., Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Ed. 59(27), 10732–10745 (2020).

    [18] X. Yang, J. Luo, X. Sun, Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem. Soc. Rev. 49(7), 2140–2195 (2020).

    [19] H. Li, S. Ma, J. Li, F. Liu, H. Zhou et al., Altering the reaction mechanism to eliminate the shuttle effect in lithium-sulfur batteries. Energy Storage Mater. 26, 203–212 (2020).

    [20] H. Li, S. Ma, H. Cai, H. Zhou, Z. Huang et al., Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 18, 338–348 (2019).

    [21] H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15, 165 (2023).

    [22] B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020).

    [23] Y. Gong, J. Li, K. Yang, S. Li, M. Xu et al., Towards practical application of Li–S battery with high sulfur loading and lean electrolyte: Will carbon-based hosts win this race? Nano-Micro Lett. 15, 150 (2023).

    [24] Y. Wang, Y. Zhao, K. Liu, S. Wang, N. Li et al., Li intercalation in an MoSe2 electrocatalyst: in situ observation and modulation of its precisely controllable phase engineering for a high-performance flexible Li-S battery. Carbon Energy 5(2), e255 (2023).

    [25] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    [26] J. Gu, Z. Liang, J. Shi, Y. Yang, Electrochemo-mechanical stresses and their measurements in sulfide-based all-solid-state batteries: a review. Adv. Energy Mater. 13, 2203153 (2023).

    [27] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018).

    [28] T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    [29] M. Liu, S. Ganapathy, M. Wagemaker, A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state electrolytes. Acc. Chem. Res. 55(3), 333–344 (2022).

    [30] M.L. Holekevi Chandrappa, J. Qi, C. Chen, S. Banerjee, S.P. Ong, Thermodynamics and kinetics of the cathode-electrolyte interface in all-solid-state Li-S batteries. J. Am. Chem. Soc. 144(39), 18009–18022 (2022).

    [31] X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium-sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15, 75 (2023).

    [32] W.D. Jung, J.S. Kim, S. Choi, S. Kim, M. Jeon et al., Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett. 20(4), 2303–2309 (2020).

    [33] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    [34] L. Zhou, A. Assoud, Q. Zhang, X. Wu, L.F. Nazar, New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141(48), 19002–19013 (2019).

    [35] P. Adeli, J.D. Bazak, A. Huq, G.R. Goward, L.F. Nazar, Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chem. Mater. 33(1), 146–157 (2021).

    [36] Y. Lee, J. Jeong, H.-D. Lim, S.-O. Kim, H.-G. Jung et al., Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1–xSixS5I for all-solid-state batteries. ACS Sustain. Chem. Eng. 9(1), 120–128 (2021).

    [37] Y. Nikodimos, C.-J. Huang, B.W. Taklu, W.-N. Su, B.J. Hwang, Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy Environ. Sci. 15(3), 991–1033 (2022).

    [38] S. Sun, J. Wang, S. Zong, Q. Ma, H. Li et al., Integration plasma strategy controlled interfacial chemistry regulation enabling planar lithium growth in solid-state lithium metal batteries. Adv. Funct. Mater. 33, 2304929 (2023).

    [39] S. Guo, Y. Li, B. Li, N.S. Grundish, A.-M. Cao et al., Coordination-assisted precise construction of metal oxide nanofilms for high-performance solid-state batteries. J. Am. Chem. Soc. 144(5), 2179–2188 (2022).

    [40] A. Cheng, X. He, R. Wang, B. Shan, K. Wang et al., Low-cost molten salt coating enabling robust Li/garnet interface for dendrite-free all-solid-state lithium batteries. Chem. Eng. J. 450, 138236 (2022).

    [41] X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz et al., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    [42] C. Shi, T. Hamann, S. Takeuchi, G.V. Alexander, A.M. Nolan et al., 3D asymmetric bilayer garnet-hybridized high-energy-density lithium-sulfur batteries. ACS Appl. Mater. Interfaces 15(1), 751–760 (2023).

    [43] Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, e1902029 (2019).

    [44] Y. An, X. Han, Y. Liu, A. Azhar, J. Na et al., Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 18, 2103617 (2022).

    [45] S. Liu, W. Liu, D. Ba, Y. Zhao, Y. Ye et al., Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 35, e2110423 (2023).

    [46] K.S. Oh, J.E. Lee, Y.H. Lee, Y.S. Jeong, I. Kristanto et al., Elucidating ion transport phenomena in sulfide/polymer composite electrolytes for practical solid-state batteries. Nano-Micro Lett. 15, 179 (2023).

    [47] Z. Lin, X. Guo, R. Zhang, M. Tang, P. Ding et al., Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery. Nano Energy 98, 107330 (2022).

    [48] P. Zhai, Z. Yang, Y. Wei, X. Guo, Y. Gong, Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries. Adv. Energy Mater. 12, 2200967 (2022).

    [49] G.G. Eshetu, X. Judez, C. Li, O. Bondarchuk, L.M. Rodriguez-Martinez et al., Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. 56(48), 15368–15372 (2017).

    [50] Y. He, Y. Qiao, Z. Chang, X. Cao, M. Jia et al., Developing a polysulfide-phobic strategy to restrain shuttle effect in lithium-sulfur batteries. Angew. Chem. Int. Ed. 58(34), 11774–11778 (2019).

    [51] Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss et al., Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018).

    [52] Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee et al., A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nat. Energy 5, 291–298 (2020).

    [53] H. Wu, B. Tang, X. Du, J. Zhang, X. Yu et al., LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv. Sci. 7, 2003370 (2020).

    [54] W. Liu, C. Yi, L. Li, S. Liu, Q. Gui et al., Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 60(23), 12931–12940 (2021).

    [55] M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022).

    [56] Y.-Z. Sun, J.-Q. Huang, C.-Z. Zhao, Q. Zhang, A review of solid electrolytes for safe lithium-sulfur batteries. Sci. China Chem. 60, 1508–1526 (2017).

    [57] J. Yue, M. Yan, Y.-X. Yin, Y.-G. Guo, Progress of the interface design in all-solid-state Li–S batteries. Adv. Funct. Mater. 28, 1707533 (2018).

    [58] X. Yu, A. Manthiram, Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes. Acc. Chem. Res. 50(11), 2653–2660 (2017).

    [59] E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state lithium−sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2, 199–230 (2019).

    [60] Z. Lin, Z. Liu, W. Fu, N.J. Dudney, C. Liang, Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52(29), 7460–7463 (2013).

    [61] T. Hakari, A. Hayashi, M. Tatsumisago, Li2S-based solid solutions as positive electrodes with full utilization and superlong cycle life in all-solid-state Li/S batteries. Adv. Sustain. Syst. 1, 1700017 (2017).

    [62] K. Suzuki, N. Mashimo, Y. Ikeda, T. Yokoi, M. Hirayama et al., High cycle capability of all-solid-state lithium–sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 1(6), 2373–2377 (2018).

    [63] B.-S. Zhao, L. Wang, P. Chen, S. Liu, G.-R. Li et al., Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13(29), 34477–34485 (2021).

    [64] D. Wang, L.-J. Jhang, R. Kou, M. Liao, S. Zheng et al., Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023).

    [65] H. Pan, M. Zhang, Z. Cheng, H. Jiang, J. Yang et al., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8, eabn4372 (2022).

    [66] M. Nagao, A. Hayashi, M. Tatsumisago, Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem. Commun. 22, 177–180 (2012).

    [67] K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu et al., Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017).

    [68] Y. Lu, X. Huang, Z. Song, K. Rui, Q. Wang et al., Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 15, 282–290 (2018).

    [69] K. Fu, Y. Gong, G.T. Hitz, D.W. McOwen, Y. Li et al., Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10(7), 1568–1575 (2017).

    [70] W. Li, Q. Wang, J. Jin, Y. Li, M. Wu et al., Constructing dual interfacial modification by synergetic electronic and ionic conductors: toward high-performance LAGP-based Li-S batteries. Energy Storage Mater. 23, 299–305 (2019).

    [71] A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5(8), 701–705 (2003).

    [72] T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao et al., All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power. Sources 182(2), 621–625 (2008).

    [73] Z. Chen, Z. Liang, H. Zhong, Y. Su, K. Wang et al., Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium–sulfur batteries. ACS Energy Lett. 7(8), 2761–2770 (2022).

    [74] M. Chen, S. Adams, High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electrochem. 19, 697–702 (2015).

    [75] F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16(7), 4521–4527 (2016).

    [76] A. Unemoto, S. Yasaku, G. Nogami, M. Tazawa, M. Taniguchi et al., Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl. Phys. Lett. 105, 083901 (2014).

    [77] X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan et al., High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017).

    [78] R. Xu, J. Yue, S. Liu, J. Tu, F. Han et al., Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density. ACS Energy Lett. 4(5), 1073–1079 (2019).

    [79] X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao et al., Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17(5), 2967–2972 (2017).

    [80] J. Wang, X. Yan, Z. Zhang, R. Guo, H. Ying et al., Rational design of an electron/ion dual-conductive cathode framework for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12(37), 41323–41332 (2020).

    [81] L. Wang, X. Yin, C. Jin, C. Lai, G. Qu et al., Cathode-supported-electrolyte configuration for high-performance all-solid-state lithium-sulfur batteries. ACS Appl. Energ. Mater. 3(12), 11540–11547 (2020).

    [82] Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    [83] G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue et al., Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium-sulfur batteries. Energ. Environ. Sci. 10(12), 2544–2551 (2017).

    [84] F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018).

    [85] M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 22, 278–289 (2016).

    [86] M. Liu, H.R. Jiang, Y.X. Ren, D. Zhou, F.Y. Kang et al., In-situ fabrication of a freestanding acrylate-based hierarchical electrolyte for lithium-sulfur batteries. Electrochim. Acta 213, 871–878 (2016).

    [87] C. Monroe, J. Newman, The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151, A880 (2004).

    [88] L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling et al., Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    [89] Z. Ning, G. Li, D.L.R. Melvin, Y. Chen, J. Bu et al., Dendrite initiation and propagation in lithium metal solid-state batteries. Nature 618, 287–293 (2023).

    [90] X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu et al., Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20(4), 2871–2878 (2020).

    [91] J.-M. Doux, Y. Yang, D.H.S. Tan, H. Nguyen, E.A. Wu et al., Pressure effects on sulfide electrolytes for all solid-state batteries. J. Mater. Chem. A 8(10), 5049–5055 (2020).

    [92] J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54(17), 3390–3402 (2021).

    [93] X. Zhu, W. Jiang, S. Zhao, R. Huang, M. Ling et al., Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries. Nano Energy 96, 107093 (2022).

    [94] X. Liang, L. Wang, X. Wu, X. Feng, Q. Wu et al., Solid-state electrolytes for solid-state lithium-sulfur batteries: comparisons, advances and prospects. J. Energy Chem. 73, 370–386 (2022).

    [95] M. Nagao, K. Suzuki, Y. Imade, M. Tateishi, R. Watanabe et al., All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures. J. Power. Sources 330, 120–126 (2016).

    [96] M. Sakuma, K. Suzuki, M. Hirayama, R. Kanno, Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ion. 285, 101–105 (2016).

    [97] S. Luo, Z. Wang, X. Li, X. Liu, H. Wang et al., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).

    [98] A. Kato, A. Hayashi, M. Tatsumisago, Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J. Power. Sources 309, 27–32 (2016).

    [99] W. Luo, Y. Gong, Y. Zhu, K.K. Fu, J. Dai et al., Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138(37), 12258–12262 (2016).

    [100] F. Zhang, Y. Guo, L. Zhang, P. Jia, X. Liu et al., A review of the effect of external pressure on all-solid-state batteries. Etransportation 15, 100220 (2023).

    [101] C. Cui, Q. Ye, C. Zeng, S. Wang, X. Xu et al., One-step fabrication of garnet solid electrolyte with integrated lithiophilic surface. Energy Storage Mater. 45, 814–820 (2022).

    [102] M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021).

    [103] Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao et al., Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 50, 3889–3956 (2021).

    [104] S. Lobe, A. Bauer, S. Uhlenbruck, D. Fattakhova-Rohlfing, Physical vapor deposition in solid-state battery development: from materials to devices. Adv. Sci. 8, e2002044 (2021).

    [105] M. Nagao, A. Hayashi, M. Tatsumisago, Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte. Electrochemistry 80(10), 734–736 (2012).

    [106] H.T. Kim, T. Mun, C. Park, S.W. Jin, H.Y. Park, Characteristics of lithium phosphorous oxynitride thin films deposited by metal-organic chemical vapor deposition technique. J. Power. Sources 244, 641–645 (2013).

    [107] A. Sharafi, H.M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power. Sources 302, 135–139 (2016).

    [108] S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019).

    [109] Z. Huang, W. Pang, P. Liang, Z. Jin, N. Grundish et al., A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7(27), 16425–16436 (2019).

    [110] K. Nie, Y. Hong, J. Qiu, Q. Li, X. Yu et al., Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives. Front. Chem. 6, 616 (2018).

    [111] K. Suzuki, D. Kato, K. Hara, T.-A. Yano, M. Hirayama et al., Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium–sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim. Acta 258, 110–115 (2017).

    [112] M. Sun, Z. Zeng, W. Zhong, Z. Han, L. Peng et al., In-situ polymerization methods for polymer-based solid-state lithium batteries. Batter. Supercaps 5(12), e202200338 (2022).

    [113] V. Vijayakumar, B. Anothumakkool, S. Kurungot, M. Winter, J.R. Nair, In situ polymerization process: an essential design tool for lithium polymer batteries. Energy Environ. Sci. 14(5), 2708–2788 (2021).

    [114] Q. Yang, N. Deng, J. Chen, B. Cheng, W. Kang, The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries. Chem. Eng. J. 413, 127427 (2021).

    [115] M. Okada, Y. Yamashita, Y. Ishii, Polymerization of 1,3-dioxolane. Die Makromolekulare Chemie 80(1), 196–207 (1964).

    [116] L. Kong, H. Zhan, Y. Li, Y. Zhou, In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique. Electrochem. Commun. 9(10), 2557–2563 (2007).

    [117] J. Zhou, T. Qian, J. Liu, M. Wang, L. Zhang et al., High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 19, 3066–3073 (2019).

    [118] W.-P. Wang, J. Zhang, Y.-X. Yin, H. Duan, J. Chou et al., A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries. Adv. Mater. 32, 2000302 (2020).

    [119] T. Liu, J. Zhang, W. Han, J. Zhang, G. Ding et al., Review-in situ polymerization for integration and interfacial protection towards solid state lithium batteries. J. Electrochem. Soc. 167, 070527 (2020).

    [120] X.-B. Cheng, C. Yan, J.-Q. Huang, P. Li, L. Zhu et al., The gap between long lifespan Li-S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater. 6, 18–25 (2017).

    [121] C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Liu, Q. Zhang, Lithium-anode protection in lithium-sulfur batteries. Trends Chem. 1(7), 693–704 (2019).

    [122] Y. Liang, H. Liu, G. Wang, C. Wang, Y. Ni et al., Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat (2022).

    [123] X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Structural design of lithium-sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239–293 (2018).

    [124] H. Yuan, H.-X. Nan, C.-Z. Zhao, G.-L. Zhu, Y. Lu et al., Slurry-coated sulfur/sulfide cathode with Li metal anode for all-solid-state lithium-sulfur pouch cells. Batter. Supercaps 3(7), 596–603 (2020).

    [125] J.-K. Hu, H. Yuan, S.-J. Yang, Y. Lu, S. Sun et al., Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries. J. Energy Chem. 71, 612–618 (2022).

    [126] Q. Wang, Z. Wen, J. Jin, J. Guo, X. Huang et al., A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem. Commun. 52(8), 1637–1640 (2016).

    [127] S. Xu, D.W. McOwen, L. Zhang, G.T. Hitz, C. Wang et al., All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater. 15, 458–464 (2018).

    [128] S. Ohno, W.G. Zeier, Toward practical solid-state lithium-sulfur batteries: challenges and perspectives. Acc. Mater. Res. 2(10), 869–880 (2021).

    [129] H. Chen, M. Zheng, S. Qian, H.Y. Ling, Z. Wu et al., Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 3(6), 929–956 (2021).

    Bingxin Qi, Xinyue Hong, Ying Jiang, Jing Shi, Mingrui Zhang, Wen Yan, Chao Lai. A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries[J]. Nano-Micro Letters, 2024, 16(1): 071
    Download Citation