• Ultrafast Science
  • Vol. 4, Issue 1, 0052 (2024)
Miguel Marquez1,†, Giacomo Balistreri1,†, Roberto Morandotti, Luca Razzari*, and Jinyang Liang*
Author Affiliations
  • Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X1P7, Canada.
  • show less
    DOI: 10.34133/ultrafastscience.0052 Cite this Article
    Miguel Marquez, Giacomo Balistreri, Roberto Morandotti, Luca Razzari, Jinyang Liang. Metalens-Based Compressed Ultracompact Femtophotography: Analytical Modeling and Simulations[J]. Ultrafast Science, 2024, 4(1): 0052 Copy Citation Text show less
    References

    [1] Liang J. Punching holes in light: Recent progress in single-shot coded-aperture optical imaging. Rep Prog Phys. 2020;83(11): Article 116101.

    [2] Wood JC, Chapman DJ, Poder K, Lopes NC, Rutherford ME, White TG, Albert F, Behm KT, Booth N, Bryant JSJ, et al. Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator. Sci Rep. 2018;8:11010.

    [3] Liang J, Zhu L, Wang LV. Single-shot real-time femtosecond imaging of temporal focusing. Light: Sci Appli. 2018;7(1):42.

    [4] Liu X, Skripka A, Lai Y, Jiang C, Liu J, Vetrone F, Liang J. Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging. Nat Commun. 2021;12(1):6401.

    [5] Liang J, Ma C, Zhu L, Chen Y, Gao L, Wang LV. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Sci Adv. 2017;3: Article e1601814.

    [6] Malý P, Gruber JM, Cogdell RJ, Mančal T, Van Grondelle R. Ultrafast energy relaxation in single light-harvesting complexes. Proc Natl Acad Sci. 2016;113(11):2934–2939.

    [7] Gao L, Liang J, Li C, Wang LV. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature. 2014;516(7529):74–77.

    [8] Tang H, Men T, Liu X, Hu Y, Su J, Zuo Y, Li P, Liang J, Downer MC, Li Z. Single-shot compressed optical field topography. Light: Sci Appli. 2022;11:244.

    [9] Wang P, Wang LV. Single-shot reconfigurable femtosecond imaging of ultrafast optical dynamics. Adv Sci. 2023;10(13): Article e2207222.

    [10] Mao X, Mao S, Russo RE. Imaging femtosecond laser-induced electronic excitation in glass. Appl Phys Lett. 2003;82(5):697–699.

    [11] Barber B, Putterman S. Observation of synchronous picosecond sonoluminescence. Nature. 1991;352(6333):318–320.

    [12] Merritt D, Milosavljević M, Verde L, Jimenez R. Dark matter spikes and annihilation radiation from the galactic center. Phys Rev Lett. 2001;88(19): Article 191301.

    [13] Lai Y, Xue Y, Côté CY, Liu X, Laramée A, Jaouen N, Légaré F, Tian L, Liang J. Single-shot ultraviolet compressed ultrafast photography. Laser Photonics. 2020;14(10):2000122.

    [14] Marquez M, Lai Y, Liu X, Jiang C, Zhang S, Arguello H, Liang J. Deep-learning supervised snapshot compressive imaging enabled by an end-to-end adaptive neural network. IEEE J Sel Top Sig Proc. 2022;16(4):688–699.

    [15] Zhang A, Wu J, Suo J, Fang L, Qiao H, Li DDU, Zhang S, Fan J, Qi D, Dai Q, et al. Single-shot compressed ultrafast photography based on U-net network. Opt Express. 2020;28(26):39299–39310.

    [16] Wang P, Liang J, Wang LV. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat Commun. 2020;11:2091.

    [17] Lu Y, Wong TT, Chen F, Wang L. Compressed ultrafast spectral-temporal photography. Phys Rev. 2019;122(19): Article 193904.

    [18] Touil M, Idlahcen S, Becheker R, Lebrun D, Rozé C, Hideur A, Godin T. Acousto-optically driven lensless single-shot ultrafast optical imaging. Light: Sci Appli. 2022;11(1):66.

    [19] Xie C, Meyer R, Froehly L, Giust R, Courvoisier F. In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging. Light: Sci Appli. 2021;10(1):126.

    [20] Steffen B, Gerth C, Caselle M, Felber M, Kozak T, Makowski DR, Mavrič U, Mielczarek A, Peier P, Przygoda K, et al. Compact single-shot electro-optic detection system for THz pulses with femtosecond time resolution at MHz repetition rates. Rev Sci Instrum. 2020;91(4): Article 045123.

    [21] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S. Ultrafast laser processing of materials: From science to industry. Light: Sci Appli. 2016;5(8):e16133–e16133.

    [22] Hua X, Wang Y, Wang S, Zou X, Zhou Y, Li L, Yan F, Cao X, Xiao S, Tsai DP, et al. Ultra-compact snapshot spectral light-field imaging. Nat Commun. 2022;13:2732.

    [23] Chen C, Song W, Chen JW, Wang JH, Chen YH, Xu B, Chen MK, Li H, Fang B, Chen J, et al. Spectral tomographic imaging with aplanatic metalens. Light: Sci Appli. 2019;8(1):99.

    [24] Khorasaninejad M, Chen WT, Zhu AY, Oh J, Devlin RC, Rousso D, Capasso F. Multispectral chiral imaging with a metalens. Nano Lett. 2016;16(7):4595–4600.

    [25] Lin Z, Pestourie R, Roques-Carmes C, Li Z, Capasso F, Soljačić M, Johnson SG. End-to-end metasurface inverse design for single-shot multi-channel imaging. Opt Express. 2022;30(16):28358–28370.

    [26] Pan M, Fu Y, Zheng M, Chen H, Zang Y, Duan H, Li Q, Qiu M, Hu Y. Dielectric metalens for miniaturized imaging systems: Progress and challenges. Light: Sci Appli. 2022;11(1):195.

    [27] Divitt S, Zhu W, Zhang C, Lezec HJ, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science. 2019;364(6443):890–894.

    [28] Holsteen AL, Lin D, Kauvar I, Wetzstein G, Brongersma ML. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 2019;19(4):2267–2271.

    [29] Yang Z, Wang Z, Wang Y, Feng X, Zhao M, Wan Z, Zhu L, Liu J, Huang Y, Xia J, et al. Generalized Hartmann-shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat Commun. 2018;9:4607.

    [30] Diels JC, Rudolph W. Ultrashort laser pulse phenomena. Albuquerque (NM): Elsevier; 2006.

    [31] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Paper presented at: Medical Image Computing and Computer-Assisted Intervention (MICCAI); 2015 Oct 5–9; Munich, Germany.

    [32] Yuan X, Liu Y, Suo J, Dai Q. Plug-and-play algorithms for large-scale snapshot compressive imaging, Paper presented at: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020 Jun 13–19. Seattle, WA.

    [33] Bacca J, Galvis L, Arguello H. Coupled deep learning coded aperture design for compressive image classification. Opt Express. 2020;28(6):8528–8540.

    [34] Lau DL, Arce GR. Modern digital halftoning. Boca Raton (FL): CRC Press; 2018.

    [35] Rovere A, Jeong YG, Piccoli R, Lee SH, Lee SC, Kwon OP, Jazbinsek M, Morandotti R, Razzari L. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm. Opt Express. 2018;26(3):2509–2516.

    [36] Khorasaninejad M, Chen WT, Oh J, Capasso F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 2016;16(6):3732–3737.

    [37] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–1194.

    [38] Groever B, Rubin NA, Mueller JB, Devlin RC, Capasso F. High-efficiency chiral meta-lens. Sci Rep. 2018;8:7240.

    [39] Liang H, Lin Q, Xie X, Sun Q, Wang Y, Zhou L, Liu L, Yu X, Zhou J, Krauss TF, et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 2018;18(7):4460–4466.

    [40] Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J, Mishra I, Devlin RC, Capasso F. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 2016;16(11):7229–7234.

    [41] Fan ZB, Shao ZK, Xie MY, Pang XN, Ruan WS, Zhao FL, Chen YJ, Yu SY, Dong JW. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys Rev Appli. 2018;10(1): Article 014005.

    [42] Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt Express. 2016;24(16):18468–18477.

    [43] Arad B, Timofte R, Ben-Shahar O, Lin YT, Finlayson GD. Ntire 2020 challenge on spectral reconstruction from an rgb image. Paper presented at: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020 Jun 13–19. Seattle, WA.

    [44] Zaccone G, Karim MR. Deep Learning with TensorFlow: Explore neural networks and build intelligent systems with Python. Birmingham (UK): Packt Publishing Ltd; 2018.

    [45] Zhao H, Gallo O, Frosio I, Kautz J. Loss functions for image restoration with neural networks. IEEE Trans Comput Imag. 2016;3(1):47–57.

    [46] Wang Z, Su F, Hegmann FA. Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO3. Opt Express. 2015;23(6):8073–8086.

    [47] Wang C, Yu Z, Zhang Q, Sun Y, Tao C, Wu F, Zheng Z. Metalens eyepiece for 3D holographic near-eye display. Nano. 2021;11(8):1920.

    [48] Kuttruff J, Garoli D, Allerbeck J, Krahne R, de Luca A, Brida D, Caligiuri V, Maccaferri N. Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities. Commun Phys. 2020;3(1):114.

    [49] Poulin PR, Nelson KA. Irreversible organic crystalline chemistry monitored in real time. Science. 2006;313(5794):1756–1760.

    [50] Sävert A, Mangles SPD, Schnell M, Siminos E, Cole JM, Leier M, Reuter M, Schwab MB, Möller M, Poder K, et al. Direct observation of the injection dynamics of a laser wakefield accelerator using few-femtosecond shadowgraphy. Phys Rev Lett. 2015;115(5): Article 055002.

    Miguel Marquez, Giacomo Balistreri, Roberto Morandotti, Luca Razzari, Jinyang Liang. Metalens-Based Compressed Ultracompact Femtophotography: Analytical Modeling and Simulations[J]. Ultrafast Science, 2024, 4(1): 0052
    Download Citation