• Advanced Photonics Nexus
  • Vol. 3, Issue 4, 044001 (2024)
Jorge Parra1, Juan Navarro-Arenas1,2, and Pablo Sanchis1,*
Author Affiliations
  • 1Universitat Politècnica de València, Nanophotonics Technology Center, Valencia, Spain
  • 2Universidad de Valencia, Instituto de Ciencia de Materiales (ICMUV), Paterna, Spain
  • show less
    DOI: 10.1117/1.APN.3.4.044001 Cite this Article Set citation alerts
    Jorge Parra, Juan Navarro-Arenas, Pablo Sanchis, "Silicon thermo-optic phase shifters: a review of configurations and optimization strategies," Adv. Photon. Nexus 3, 044001 (2024) Copy Citation Text show less
    References

    [1] S. Y. Siew et al. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [2] N. Margalit et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [3] S. Shekhar et al. Roadmapping the next generation of silicon photonics. Nat. Commun., 15, 751(2024).

    [4] Z. Xiao et al. Recent progress in silicon-based photonic integrated circuits and emerging applications. Adv. Opt. Mater., 11, 2301028(2023).

    [5] Y. Zhang, J. Liu. Prediction of overall energy consumption of data centers in different locations. Sensors, 22, 3704(2022).

    [6] D. J. Thomson et al. 50-Gb/s silicon optical modulator. IEEE Photonics Technol. Lett., 24, 234-236(2012).

    [7] C. Xiong et al. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica, 3, 1060(2016).

    [8] X. Zhang et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature, 603, 253-258(2022).

    [9] N. C. Harris et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics, 11, 447-452(2017).

    [10] C. Dhote, A. Singh, S. Kumar. Silicon photonics sensors for biophotonic applications—a review. IEEE Sens. J., 22, 18228-18239(2022).

    [11] M. Lipson. The revolution of silicon photonics. Nat. Mater., 21, 974-975(2022).

    [12] W. Bogaerts et al. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [13] J. Sun et al. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [14] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [15] D. M. Kita et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun., 9, 4405(2018).

    [16] G. Cocorullo, I. Rendina. Thermo-optical modulation at 1.5  μm in silicon etalon. Electron. Lett., 28, 83-85(1992). https://doi.org/10.1049/el:19920051

    [17] J. Komma et al. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett., 101, 41905(2012).

    [18] M. Bahadori et al. Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform. J. Lightwave Technol., 36, 773-788(2018).

    [19] M. Jacques et al. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express, 27, 10456(2019).

    [20] J. Parra et al. Ultra-low loss hybrid ITO/Si thermo-optic phase shifter with optimized power consumption. Opt. Express, 28, 9393(2020).

    [21] R. Espinola et al. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technol. Lett., 15, 1366-1368(2003).

    [22] J. Xia et al. Low power 2 × 2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching. Opt. Commun., 232, 223-228(2004).

    [23] T. Chu et al. Compact 1×N thermo-optic switches based on silicon photonic wire waveguides. Opt. Express, 13, 10109(2005). https://doi.org/10.1364/OPEX.13.010109

    [24] P. Dong et al. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt. Express, 18, 9852(2010).

    [25] Y. Shoji et al. Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Opt. Express, 18, 9071(2010).

    [26] A. H. Atabaki et al. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express, 18, 18312(2010).

    [27] P. Sun, R. M. Reano. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Opt. Express, 18, 8406(2010).

    [28] P. Dong et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt. Express, 18, 20298(2010).

    [29] J. Van Campenhout et al. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. Opt. Lett., 35, 1013(2010).

    [30] Q. Fang et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol. Lett., 23, 525-527(2011).

    [31] Q. Fang et al. High efficiency ring-resonator filter with NiSi heater. IEEE Photonics Technol. Lett., 24, 350-352(2012).

    [32] A. H. Atabaki et al. Sub-100-nanosecond thermal reconfiguration of silicon photonic devices. Opt. Express, 21, 15706(2013).

    [33] A. Masood et al. Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices. Opt. Mater. Express, 4, 1383(2014).

    [34] B. Pant et al. Study into the spread of heat from thermo-optic silicon photonic elements. Opt. Express, 29, 36461(2021).

    [35] L. Yu, D. Dai, S. He. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl. Phys. Lett., 105, 251104(2014).

    [36] D. Schall et al. Infrared transparent graphene heater for silicon photonic integrated circuits. Opt. Express, 24, 7871(2016).

    [37] S. Yan et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun., 8, 14411(2017).

    [38] Z. Xu et al. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Opt. Express, 25, 19479(2017).

    [39] A. Dash et al. Carbon-nanotube-on-waveguide thermo-optic tuners. Opt. Lett., 43, 5194(2018).

    [40] D. Oz et al. Optically transparent and thermally efficient 2D MoS2 heaters integrated with silicon microring resonators. ACS Photonics, 10, 1783-1794(2023). https://doi.org/10.1021/acsphotonics.3c00053

    [41] W. Tong et al. An efficient, fast-responding, low-loss thermo-optic phase shifter based on a hydrogen-doped indium oxide microheater. Laser Photonics Rev., 17, 2201032(2023).

    [42] A. A. Balandin et al. Superior thermal conductivity of single-layer graphene. Nano Lett., 8, 902-907(2008).

    [43] L. Yu et al. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 3, 159(2016).

    [44] M. Geis et al. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technol. Lett., 16, 2514-2516(2004).

    [45] M. R. Watts et al. Adiabatic thermo-optic Mach-Zehnder switch. Opt. Lett., 38, 733(2013).

    [46] N. C. Harris et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express, 22, 10487(2014).

    [47] D. Patel et al. A 4 × 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters, 104-105(2014).

    [48] X. Li et al. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Opt. Lett., 39, 751(2014).

    [49] X. Wang et al. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect. Opt. Express, 24, 23081(2016).

    [50] A. Ribeiro, W. Bogaerts. Digitally controlled multiplexed silicon photonics phase shifter using heaters with integrated diodes. Opt. Express, 25, 29778(2017).

    [51] M. Mendez-Astudillo et al. Compact thermo-optic MZI switch in silicon-on-insulator using direct carrier injection. Opt. Express, 27, 899(2019).

    [52] T. Kita, M. Mendez-Astudillo. Ultrafast silicon MZI optical switch with periodic electrodes and integrated heat sink. J. Lightwave Technol., 39, 5054-5060(2021).

    [53] A. Ribeiro et al. Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron., 26, 1-8(2020).

    [54] A. Densmore et al. Compact and low power thermo-optic switch using folded silicon waveguides. Opt. Express, 17, 10457(2009).

    [55] K. Murray et al. Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt. Express, 23, 19575(2015).

    [56] S. Chung, M. Nakai, H. Hashemi. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt. Express, 27, 13430(2019).

    [57] H. Qiu et al. Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt. Lett., 45, 4806(2020).

    [58] S. A. Miller et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 7, 3(2020).

    [59] G. T. Reed et al. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [60] A. Rahim et al. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photonics, 3, 1-23(2021).

    [61] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [62] A. Liu et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express, 15, 660(2007).

    [63] D. Marris-Morini et al. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Opt. Express, 16, 334(2008).

    [64] F. Y. Gardes et al. 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt. Express, 19, 11804(2011).

    [65] T. Baehr-Jones et al. Ultralow drive voltage silicon traveling-wave modulator. Opt. Express, 20, 12014(2012).

    [66] J. Ding et al. Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator. J. Lightwave Technol., 31, 2434-2440(2013).

    [67] X. Xiao et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express, 21, 4116(2013).

    [68] Q. Xu et al. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [69] J. C. Rosenberg et al. A 25 Gbps silicon microring modulator based on an interleaved junction. Opt. Express, 20, 26411(2012).

    [70] D. Marris-Morini et al. Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers. Opt. Express, 21, 22471(2013).

    [71] S. Meister et al. High-speed Fabry–Pérot optical modulator in silicon with 3-μm diode. J. Lightwave Technol., 33, 878-881(2015).

    [72] R. Dubé-Demers, S. LaRochelle, W. Shi. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 3, 622(2016).

    [73] J. Sun et al. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019).

    [74] C. Errando-Herranz et al. Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter. Opt. Lett., 40, 3556(2015).

    [75] M. W. Pruessner et al. Broadband opto-electro-mechanical effective refractive index tuning on a chip. Opt. Express, 24, 13917(2016).

    [76] H. Sattari et al. Silicon photonic MEMS phase-shifter. Opt. Express, 27, 18959(2019).

    [77] R. Baghdadi et al. Dual slot-mode NOEM phase shifter. Opt. Express, 29, 19113(2021).

    [78] T. Grottke et al. Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. Opt. Express, 29, 5525(2021). https://doi.org/10.1364/OE.413202

    [79] P. Edinger et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett., 46, 5671(2021).

    [80] A. Melikyan et al. High-speed plasmonic phase modulators. Nat. Photonics, 8, 229-233(2014).

    [81] C. Haffner et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics, 9, 525-528(2015).

    [82] C. Haffner et al. Low-loss plasmon-assisted electro-optic modulator. Nature, 556, 483-486(2018).

    [83] W. Heni et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat. Commun., 10, 1694(2019).

    [84] M. Xu, X. Cai. Advances in integrated ultra-wideband electro-optic modulators [Invited]. Opt. Express, 30, 7253(2022).

    [85] G. V. Naik, J. Kim, A. Boltasseva. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express, 1, 1090(2011).

    [86] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264-3294(2013).

    [87] W. Jaffray et al. Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Adv. Opt. Photonics, 14, 148(2022).

    [88] R. Amin et al. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica, 7, 333(2020).

    [89] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [90] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242(2021).

    [91] C. Wang et al. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547(2018).

    [92] M. He et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [93] S. Abel et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun., 4, 1671(2013).

    [94] K. J. Kormondy et al. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics. Nanotechnology, 28, 075706(2017). https://doi.org/10.1088/1361-6528/aa53c2

    [95] P. Castera et al. Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon. Opt. Express, 23, 15332(2015). https://doi.org/10.1364/OE.23.015332

    [96] S. Abel et al. A hybrid barium titanate–silicon photonics platform for ultraefficient electro-optic tuning. J. Lightwave Technol., 34, 1688-1693(2016).

    [97] F. Eltes et al. A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol., 37, 1456-1462(2019). https://doi.org/10.1109/JLT.2019.2893500

    [98] J. E. Ortmann et al. Ultra-low-power tuning in hybrid barium titanate-silicon nitride electro-optic devices on silicon. ACS Photonics, 6, 2677-2684(2019).

    [99] S. Abel et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater., 18, 42-47(2019).

    [100] F. Eltes et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater., 19, 1164-1168(2020).

    [101] J. Geler-Kremer et al. A ferroelectric multilevel non-volatile photonic phase shifter. Nat. Photonics, 16, 491-497(2022).

    [102] K. Luke et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452(2020).

    [103] L. Chang et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett., 42, 803(2017).

    [104] S. Abdollahramezani et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189-1241(2020).

    [105] J. Parra et al. Toward nonvolatile switching in silicon photonic devices. Laser Photonics Rev., 15, 2000501(2021).

    [106] Z. Gong et al. Phase change materials in photonic devices. J. Appl. Phys., 129, 030902(2021).

    [107] C. Ríos et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX, 3, 26(2022).

    [108] X. Li et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica, 6, 1(2019).

    [109] Y. Zhang et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [110] Q. Zhang et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett., 43, 94(2018).

    [111] S. A. Vitale et al. Phase transformation and switching behavior of magnetron plasma sputtered Ge2Sb2Se4 Te. Adv. Photonics Res., 3, 2200202(2022). https://doi.org/10.1002/adpr.202200202

    [112] M. Delaney et al. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater., 30, 2002447(2020). https://doi.org/10.1002/adfm.202002447

    [113] Z. Fang et al. Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material. Adv. Opt. Mater., 9, 2002049(2021).

    [114] Z. Fang et al. Low-loss broadband nonvolatile 2×2 switch based on Sb2Se3 for programmable silicon photonics, STh4G.6(2022).

    [115] Z. Fang et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol., 17, 842-848(2022).

    [116] R. Chen et al. Non-volatile electrically programmable integrated photonics with a 5-bit operation. Nat. Commun., 14, 3465(2023).

    [117] R. Chen et al. Opportunities and challenges for large-scale phase-change material integrated electro-photonics. ACS Photonics, 9, 3181-3195(2022).

    [118] X. Yang et al. Non-volatile optical switch element enabled by low-loss phase change material. Adv. Funct. Mater., 33, 2304601(2023).

    Jorge Parra, Juan Navarro-Arenas, Pablo Sanchis, "Silicon thermo-optic phase shifters: a review of configurations and optimization strategies," Adv. Photon. Nexus 3, 044001 (2024)
    Download Citation