• Chinese Optics Letters
  • Vol. 22, Issue 11, 113801 (2024)
Song Huang1, Anmin Wu1, Guanting Song2, Jiaxin Cao2..., Jianghong Yao2, Qiang Wu1,*, Weiqing Gao2,** and Jingjun Xu2|Show fewer author(s)
Author Affiliations
  • 1Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
  • 2Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China
  • show less
    DOI: 10.3788/COL202422.113801 Cite this Article Set citation alerts
    Song Huang, Anmin Wu, Guanting Song, Jiaxin Cao, Jianghong Yao, Qiang Wu, Weiqing Gao, Jingjun Xu, "Titanium hyperdoped black silicon prepared by femtosecond laser irradiation: first-principle calculations and experimental verification," Chin. Opt. Lett. 22, 113801 (2024) Copy Citation Text show less
    References

    [1] J. Mailoa, A. Akey, C. Simmons et al. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nat. Commun., 5, 1(2014).

    [2] J. Oh, H. Yuan, H. Branz. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol., 7, 743(2012).

    [3] W. Yang, J. Chen, Y. Zhang et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology. Adv. Funct. Mater., 29, 1808182(2019).

    [4] S. Huang, J. Cao, G. Song et al. Broadband-spectral-responsivity of black silicon photodetector with high gain and sub-bandgap sensitivity by titanium hyperdoping. Optics & Laser Technology, 171, 110399(2024).

    [5] E. García-Hemme, D. Caudevilla, S. Algaidy et al. On the optoelectronic mechanisms ruling Ti-hyperdoped Si photodiodes. Adv. Electron. Mater., 8, 2100788(2022).

    [6] K. Phillips, H. Gandhi, E. Mazur et al. Ultrafast laser processing of materials: a review. Adv. Opt. Photonics, 7, 684(2015).

    [7] X. Liu, B. Radfar, K. Chen et al. Tailoring femtosecond-laser processed black silicon for reduced carrier recombination combined with > 95% above-bandgap absorption. Adv. Photo. Res., 3, 2100234(2022).

    [8] J. Zhao, X. Li, Q. Chen et al. Ultrafast laser-induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices. Mater. Today Nano, 11, 100078(2020).

    [9] X. Jin, Q. Wu, S. Huang et al. High-performance black silicon photodetectors operating over a wide temperature range. Opt. Mater., 113, 110874(2021).

    [10] J. Carey, C. Crouch, M. Shen et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt. Lett., 30, 1773(2005).

    [11] X. Jin, Y. Sun, Q. Wu et al. High performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon. ACS Appl. Mater. Interfaces, 11, 42385(2019).

    [12] Z. Huang, J. Carey, M. Liu et al. Microstructured silicon photodetector. Appl. Phys. Lett., 89, 033506(2006).

    [13] Z. Jia, Q. Wu, X. Jin et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure. Opt. Express, 28, 5239(2020).

    [14] X. Qiu, X. Yu, S. Yuan et al. Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping. Adv. Opt. Mater., 6, 1700638(2018).

    [15] L. Du, Z. Wu, R. Li et al. Near-infrared photoresponse of femtosecond-laser processed Se-doped silicon n+−n photodiodes. Opt. Lett., 41, 5031(2016).

    [16] Y. Yang, J. H. Zhao, C. Li et al. Sub-bandgap absorption and photo-response of molybdenum heavily doped black silicon fabricated by a femtosecond laser. Opt. Lett., 46, 3300(2021).

    [17] S. Huang, G. Deng, X. Jin et al. The dark current suppression of black silicon photodetector by a lateral heterojunction. Opt. Mater., 110, 110474(2020).

    [18] B. Newman, M. Sher, E. Mazur et al. Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon. Appl. Phys. Lett., 98, 251905(2011).

    [19] S. Sze, K. Ng. Physics of Semiconductor Devices(1981).

    [20] E. García-Hemme, R. García-Hernansanz, J. Olea et al. Sub-bandgap spectral photo-response analysis of Ti supersaturated Si. Appl. Phys. Lett., 101, 192101(2012).

    [21] D. J. Backlund, S. K. Estreicher. Ti, Fe, and Ni in Si and their interactions with the vacancy and the A center: a theoretical study. Phys. Rev. B, 81, 235213(2010).

    [22] K. Sánchez, I. Aguilera, P. Palacios et al. Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group III elements (B, Al). Phys. Rev. B, 82, 165201(2010).

    [23] P. Deák, B. Aradi, T. Frauenheim et al. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B, 81, 153203(2010).

    [24] F. Beeler, O. Andersen, M. Scheffler. Electronic and magnetic structure of 3d–transition-metal point defects in silicon calculated from first principles. Phys. Rev. B, 41, 1603(1990).

    [25] K. Sánchez, I. Aguilera, P. Palacios et al. Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin. Phys. Rev. B, 79, 165203(2009).

    [26] G. Ludwig, H. Woodbury. Electronic structure of transition metal ions in a tetrahedral lattice. Phys. Rev. Lett., 5, 98(1960).

    [27] S. Huang, Q. Wu, Z. Jia et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation. Adv. Opt. Mater., 8, 1901808(2020).

    [28] M. Pelletier. Analytical Applications of Raman Spectroscopy(1999).

    Song Huang, Anmin Wu, Guanting Song, Jiaxin Cao, Jianghong Yao, Qiang Wu, Weiqing Gao, Jingjun Xu, "Titanium hyperdoped black silicon prepared by femtosecond laser irradiation: first-principle calculations and experimental verification," Chin. Opt. Lett. 22, 113801 (2024)
    Download Citation