• Nano-Micro Letters
  • Vol. 16, Issue 1, 127 (2024)
Hua Yang1, Maoxiang Jing1,*, Li Wang2,**, Hong Xu2..., Xiaohong Yan1 and Xiangming He2,***|Show fewer author(s)
Author Affiliations
  • 1Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People’s Republic of China
  • 2Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01354-z Cite this Article
    Hua Yang, Maoxiang Jing, Li Wang, Hong Xu, Xiaohong Yan, Xiangming He. PDOL-Based Solid Electrolyte Toward Practical Application: Opportunities and Challenges[J]. Nano-Micro Letters, 2024, 16(1): 127 Copy Citation Text show less
    References

    [1] J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    [2] Y. Wu, W. Wang, J. Ming, M. Li, L. Xie et al., An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery. Adv. Funct. Mater. 29, 1805978 (2019).

    [3] H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu et al., Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 33, 188–215 (2020).

    [4] H.-J. Ha, E.-H. Kil, Y.H. Kwon, J.Y. Kim, C.K. Lee et al., UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ. Sci. 5, 6491–6499 (2012).

    [5] A.L. Ahmad, U.R. Farooqui, N.A. Hamid, Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim. Acta 283, 842–849 (2018).

    [6] P. Ding, Z. Lin, X. Guo, L. Wu, Y. Wang et al., Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 51, 449–474 (2021).

    [7] K.K. Fu, Y. Gong, J. Dai, A. Gong, X. Han et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U.S.A. 113, 7094–7099 (2016).

    [8] X. Ban, W. Zhang, N. Chen, C. Sun, A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. J. Phys. Chem. C 122, 9852–9858 (2018).

    [9] B.K. Choi, Y.W. Kim, H.K. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim. Acta 45, 1371–1374 (2000).

    [10] J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Converg. 8, 2 (2021).

    [11] Y. Liu, S. Gorgutsa, C. Santato, M. Skorobogatiy, Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J. Electrochem. Soc. 159, A349–A356 (2012).

    [12] M.-K. Song, J.-Y. Cho, B.W. Cho, H.-W. Rhee, Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries. J. Power. Sources 110, 209–215 (2002).

    [13] F. Liu, N. Awanis Hashim, Y. Liu, M.R. Moghareh Abed, K. Li, Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 1–27 (2011).

    [14] F. Chen, J. Luo, M.-X. Jing, J. Li, Z.-H. Huang et al., A sandwich structure composite solid electrolyte with enhanced interface stability and electrochemical properties for solid-state lithium batteries. J. Electrochem. Soc. 168, 070513 (2021).

    [15] J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020).

    [16] K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang et al., Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021).

    [17] A. Rahimpour, M. Jahanshahi, A. Mollahosseini, B. Rajaeian, Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes. Desalination 285, 31–38 (2011).

    [18] S. Golcuk, A.E. Muftuoglu, S.U. Celik, A. Bozkurt, Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting. J. Polym. Res. 20, 144 (2013).

    [19] S. Rajendran, Experimental investigations on PAN–PEO hybrid polymer electrolytes. Solid State Ion. 130, 143–148 (2000).

    [20] X. He, J. Ren, L. Wang, W. Pu, C. Jiang et al., Synthesis of PAN/SnCl2 composite as Li-ion battery anode material. Ionics 12, 323–326 (2006).

    [21] W.-P. Chen, H. Duan, J.-L. Shi, Y. Qian, J. Wan et al., Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 143, 5717–5726 (2021).

    [22] X. He, Q. Shi, X. Zhou, C. Wan, C. Jiang, In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim. Acta 51, 1069–1075 (2005).

    [23] J. Cao, L. Wang, M. Fang, Y. Shang, L. Deng et al., Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery. Electrochim. Acta 114, 527–532 (2013).

    [24] J. Cao, L. Wang, M. Fang, X. He, J. Li et al., Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride–hexafluoropropylene/titania–poly(methyl methacrylate) for lithium-ion batteries. J. Power. Sources 246, 499–504 (2014).

    [25] W. Pu, X. He, L. Wang, Z. Tian, C. Jiang et al., Preparation of P(AN-MMA) gel electrolyte for Li-ion batteries. Ionics 14, 27–31 (2008).

    [26] J. Cao, L. Wang, X. He, M. Fang, J. Gao et al., In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 1, 5955–5961 (2013).

    [27] S. Zhang, J. Cao, Y. Shang, L. Wang, X. He et al., Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications. J. Mater. Chem. A 3, 17697–17703 (2015).

    [28] Y. Li, H. Shimizu, Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. ACS Appl. Mater. Interfaces 1, 1650–1655 (2009).

    [29] P. Pal, A. Ghosh, Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 260, 157–167 (2018).

    [30] Z. Tian, W. Pu, X. He, C. Wan, C. Jiang, Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries. Electrochim. Acta 52, 3199–3206 (2007).

    [31] H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke et al., Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12.” Phys. Chem. Chem. Phys. 13, 19378–19392 (2011).

    [32] J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury et al., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power. Sources 43, 103–110 (1993).

    [33] V. Thangadurai, W. Weppner, Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107–112 (2005).

    [34] R. Kanno, M. Murayama, Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, A742 (2001).

    [35] M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata et al., Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. J. Solid State Chem. 168, 140–148 (2002).

    [36] H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016).

    [37] L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016).

    [38] Z. Wei, Z. Zhang, S. Chen, Z. Wang, X. Yao et al., UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2// Li solid state battery working at ambient temperature. Energy Storage Mater. 22, 337–345 (2019).

    [39] S.H. Siyal, M. Li, H. Li, J.-L. Lan, Y. Yu et al., Ultraviolet irradiated PEO/LATP composite gel polymer electrolytes for lithium-metallic batteries (LMBs). Appl. Surf. Sci. 494, 1119–1126 (2019).

    [40] C. Liu, S. Wang, X. Wu, S. Xiao, C. Liu et al., In situ construction of zwitterionic polymer electrolytes with synergistic cation–anion regulation functions for lithium metal batteries. Adv. Funct. Mater. 34, 2307248 (2024).

    [41] Y.M. Jeon, S. Kim, M. Lee, W.B. Lee, J.H. Park, Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv. Energy Mater. 10, 2003114 (2020).

    [42] Y. Li, X. Wang, H. Zhou, X. Xing, A. Banerjee et al., Thin solid electrolyte layers enabled by nanoscopic polymer binding. ACS Energy Lett. 5, 955–961 (2020).

    [43] H. Wu, B. Tang, X. Du, J. Zhang, X. Yu et al., LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries. Adv. Sci. 7, 2003370 (2020).

    [44] Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang et al., Facile design of sulfide-based all solid-state lithium metal battery: in situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 31, 2101523 (2021).

    [45] Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8, 2003887 (2021).

    [46] K. Zhang, F. Wu, X. Wang, L. Zheng, X. Yang et al., An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high–voltage-tolerant and ion-conductive solid-state lithium metal batteries. Adv. Funct. Mater. 32, 2270031 (2022).

    [47] S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu et al., Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: a review. Adv. Energy Mater. 13, 2204343 (2023).

    [48] Y.Q. Mi, W. Deng, C. He, O. Eksik, Y.P. Zheng et al., In situ polymerized 1, 3-dioxolane electrolyte for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 62, e202218621 (2023).

    [49] B. Deng, M.-X. Jing, L.-X. Li, R. Li, H. Yang et al., Nano-zirconia boosting the ionic conductivity and lithium dendrite inhibition ability of a poly(1, 3-dioxolane) solid electrolyte for high-voltage solid-state lithium batteries. Sustain. Energy Fuels 5, 5461–5470 (2021).

    [50] T. Chen, H. Wu, J. Wan, M. Li, Y. Zhang et al., Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. J. Energy Chem. 62, 172–178 (2021).

    [51] H. Huang, D. Li, L. Hou, H. Du, H. Wei et al., Advanced protective layer design on the surface of Mg-based metal and application in batteries: challenges and progress. J. Power. Sources 542, 231755 (2022).

    [52] G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi et al., High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016).

    [53] J. Chen, H. Lu, X. Zhang, Y. Zhang, J. Yang et al., Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Mater. 50, 387–394 (2022).

    [54] N. Wang, X. Zhang, Z. Ju, X. Yu, Y. Wang et al., Thickness-independent scalable high-performance Li–S batteries with high areal sulfur loading via electron-enriched carbon framework. Nat. Commun. 12, 4519 (2021).

    [55] X. Gao, X. Zheng, Y. Tsao, P. Zhang, X. Xiao et al., All-solid-state lithium–sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 143, 18188–18195 (2021).

    [56] G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue et al., Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithium–sulfur batteries. Energy Environ. Sci. 10, 2544–2551 (2017).

    [57] L. Ma, M.S. Kim, L.A. Archer, Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 29, 4181–4189 (2017).

    [58] F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi et al., Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 4, eaat5383 (2018).

    [59] W.-P. Wang, J. Zhang, Y.-X. Yin, H. Duan, J. Chou et al., A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries. Adv. Mater. 32, e2000302 (2020).

    [60] Y. Yamashita, M. Okada, H. Kasahara, Kinetic studies on the polymerization of 1,3-dioxolane catalyzed by triethyl oxonium tetrafluoroborate. Makromol. Chem. 117, 256–264 (1968).

    [61] Y. Yamashita, M. Okada, K. Suyama, H. Kasahara, Equilibrium polymerization of 1,3-dioxolane. Makromol. Chem. 114, 146–154 (1968).

    [62] S. Sasaki, Y. Takahashi, H. Tadokoro, Structural studies of polyformals. II. Crystal structure of poly-1, 3-dioxolane: modification II. J. Polym. Sci. Polym. Phys. Ed. 10, 2363–2378 (1972).

    [63] L. Kong, H. Zhan, Y. Li, Y. Zhou, In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique. Electrochem. Commun. 9, 2557–2563 (2007).

    [64] Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    [65] J. Zhou, T. Qian, J. Liu, M. Wang, L. Zhang et al., High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte. Nano Lett. 19, 3066–3073 (2019).

    [66] C.-Z. Zhao, Q. Zhao, X. Liu, J. Zheng, S. Stalin et al., Rechargeable lithium metal batteries with an In-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv. Mater. 32, e1905629 (2020).

    [67] Y. Huang, S. Liu, Q. Chen, K. Jiao, B. Ding et al., Constructing highly conductive and thermomechanical stable quasi-solid electrolytes by self-polymerization of liquid electrolytes within porous polyimide nanofiber films. Adv. Funct. Mater. 32, 2201496 (2022).

    [68] H. Yang, B. Zhang, M. Jing, X. Shen, L. Wang et al., In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv. Energy Mater. 12, 2270162 (2022).

    [69] H. Xu, J. Zhang, H. Zhang, J. Long, L. Xu et al., In situ topological interphases boosting stable solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204411 (2023).

    [70] P.H. Plesch, P.H. Westermann, The polymerization of 1,3-dioxolane. I. Structure of the polymer and thermodynamics of its formation. J. Polym. Sci C Polym. Symp. 16, 3837–3843 (1967).

    [71] D. Aurbach, O. Youngman, P. Dan, The electrochemical behavior of 1, 3-dioxolane—LiClO4 solutions—II. Contaminated solutions. Electrochim. Acta 35, 639–655 (1990).

    [72] H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong et al., Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 4, 2871–2886 (2019).

    [73] G.H. Newman, R.W. Francis, L.H. Gaines, B.M.L. Rao, Hazard investigations of LiClO4/dioxolane electrolyte. J. Electrochem. Soc. 127, 2025–2027 (1980).

    [74] Q. Liu, L. Wang, X. He, Toward practical solid-state polymer lithium batteries by in situ polymerization process: a review. Adv. Energy Mater. 13, 2300798 (2023).

    [75] Q. Liu, B. Cai, S. Li, Q. Yu, F. Lv et al., Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J. Mater. Chem. A 8, 7197–7204 (2020).

    [76] S. Wen, C. Luo, Q. Wang, Z. Wei, Y. Zeng et al., Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Mater. 47, 453–461 (2022).

    [77] H. Cheng, J. Zhu, H. Jin, C. Gao, H. Liu et al., In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1, 3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Mater. Today Energy 20, 100623 (2021).

    [78] J. Zheng, W. Zhang, C. Huang, Z. Shen, X. Wang et al., In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. Mater. Today Energy 26, 100984 (2022).

    [79] W. Li, J. Gao, H. Tian, X. Li, S. He et al., SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angew. Chem. Int. Ed. 61, e202114805 (2022).

    [80] S. Zheng, Y. Chen, K. Chen, S. Yang, R. Bagherzadeh et al., In situ construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries. J. Mater. Chem. A 10, 19641–19648 (2022).

    [81] Z. Li, W. Tang, Y. Deng, M. Zhou, X. Wang et al., Enabling highly stable lithium metal batteries by using dual-function additive catalyzed in-built quasi-solid-state polymer electrolytes. J. Mater. Chem. A 10, 23047–23057 (2022).

    [82] S. Wang, L. Zhou, M.K. Tufail, L. Yang, P. Zhai et al., In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries. Chem. Eng. J. 415, 128846 (2021).

    [83] J. Xiang, Y. Zhang, B. Zhang, L. Yuan, X. Liu et al., A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ. Sci. 14, 3510–3521 (2021).

    [84] J. Zhao, M. Li, H. Su, Y. Liu, P. Bai et al., In situ fabricated non-flammable quasi-solid electrolytes for Li-metal batteries. Small Meth. 7, 2300228 (2023).

    [85] J. Wei, H. Yue, Z. Shi, Z. Li, X. Li et al., In situ gel polymer electrolyte with inhibited lithium dendrite growth and enhanced interfacial stability for lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 32486–32494 (2021).

    [86] M. Xie, Y. Wu, Y. Liu, P.P. Yu, R. Jia et al., Pathway of in situ polymerization of 1, 3-dioxolane in LiPF6 electrolyte on Li metal anode. Mater. Today Energy 21, 100730 (2021).

    [87] A. Hu, Z. Liao, J. Huang, Y. Zhang, Q. Yang et al., In-situ construction of dual lithium-ion migration channels in polymer electrolytes for lithium metal batteries. Chem. Eng. J. 448, 137661 (2022).

    [88] P. Cheng, H. Zhang, Q. Ma, W. Feng, H. Yu et al., Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1, 3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochim. Acta 363, 137198 (2020).

    [89] G. Yang, W. Hou, Y. Zhai, Z. Chen, C. Liu et al., Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries. EcoMat 5, e12325 (2023).

    [90] Y. Wu, J. Ma, H. Jiang, L. Wang, F. Zhang et al., Confined in situ polymerization of poly(1, 3-dioxolane) and poly(vinylene carbonate)-based quasi-solid polymer electrolyte with improved uniformity for lithium metal batteries. Mater. Today Energy 32, 101239 (2023).

    [91] G. Yang, Y. Zhai, J. Yao, S. Song, L. Lin et al., Synthesis and properties of poly(1, 3-dioxolane) in situ quasi-solid-state electrolytes via a rare-earth triflate catalyst. Chem. Commun. 57, 7934–7937 (2021).

    [92] L. Zhang, H. Gao, S. Xiao, J. Li, T. Ma et al., In-situ construction of ceramic–polymer all-solid-state electrolytes for high-performance room-temperature lithium metal batteries. ACS Mater. Lett. 4, 1297–1305 (2022).

    [93] W. Zhang, S. Zhang, L. Fan, L. Gao, X. Kong et al., Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 4, 644–650 (2019).

    [94] Y.-K. Han, J. Yoo, T. Yim, Distinct reaction characteristics of electrolyte additives for high-voltage lithium-ion batteries: tris(trimethylsilyl) phosphite, borate, and phosphate. Electrochim. Acta 215, 455–465 (2016).

    [95] Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    [96] Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021).

    [97] P. Zhai, T. Wang, H. Jiang, J. Wan, Y. Wei et al., 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 33, e2006247 (2021).

    [98] L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).

    [99] H. Xie, C. Yang, Y. Ren, S. Xu, T.R. Hamann et al., Amorphous-carbon-coated 3D solid electrolyte for an electro-chemomechanically stable lithium metal anode in solid-state batteries. Nano Lett. 21, 6163–6170 (2021).

    [100] Y. Wang, Z. Wang, L. Zhao, Q. Fan, X. Zeng et al., Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 33, e2008133 (2021).

    [101] H. Wan, Z. Wang, S. Liu, B. Zhang, X. He et al., Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023).

    [102] P. Jiang, J. Cao, B. Wei, G. Qian, S. Wang et al., LiF involved interphase layer enabling thousand cycles of LAGP-based solid-state Li metal batteries with 80% capacity retention. Energy Storage Mater. 48, 145–154 (2022).

    [103] J. Li, H. Hu, W. Fang, J. Ding, D. Yuan et al., Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 33, 2303718 (2023).

    [104] C. Guo, K. Du, R. Tao, Y. Guo, S. Yao et al., Inorganic filler enhanced formation of stable inorganic-rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33, 2301111 (2023).

    [105] H. Sun, X. Xie, Q. Huang, Z. Wang, K. Chen et al., Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem. Int. Ed. 60, 18335–18343 (2021).

    [106] J. Xie, S.-Y. Sun, X. Chen, L.-P. Hou, B.-Q. Li et al., Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202204776 (2022).

    [107] A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021).

    [108] X. Pei, Y. Li, T. Ou, X. Liang, Y. Yang et al., Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202205075 (2022).

    [109] X. Yi, Y. Guo, S. Chi, S. Pan, C. Geng et al., Surface Li2CO3 mediated phosphorization enables compatible interfaces of composite polymer electrolyte for solid-state lithium batteries. Adv. Funct. Mater. 33, 2303574 (2023).

    [110] M.-X. Jing, H. Yang, C. Han, F. Chen, L.-K. Zhang et al., Synergistic enhancement effects of LLZO fibers and interfacial modification for polymer solid electrolyte on the ambient-temperature electrochemical performances of solid-state battery. J. Electrochem. Soc. 166, A3019–A3027 (2019).

    [111] M.-X. Jing, H. Yang, C. Han, F. Chen, W.-Y. Yuan et al., Improving room-temperature electrochemical performance of solid-state lithium battery by using electrospun La2Zr2O7 fibers-filled composite solid electrolyte. Ceram. Int. 45, 18614–18622 (2019).

    [112] J.Y. Kim, O.B. Chae, M. Wu, E. Lim, G. Kim et al., Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy 82, 105736 (2021).

    [113] J. Wang, Q. Kang, J. Yuan, Q. Fu, C. Chen et al., Dendrite-free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. Carbon Energy 3, 153–166 (2021).

    [114] J. Duan, L. Huang, T. Wang, Y. Huang, H. Fu et al., Shaping the contact between Li metal anode and solid-state electrolytes. Adv. Funct. Mater. 30, 1908701 (2020).

    [115] Q. Li, S. Zhu, Y. Lu, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27, 1606422 (2017).

    [116] Q. Wu, M. Fang, S. Jiao, S. Li, S. Zhang et al., Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat. Commun. 14, 6296 (2023).

    [117] J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022).

    [118] Y. Ma, J.H. Teo, F. Walther, Y. Ma, R. Zhang et al., Advanced nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 32, 2270135 (2022).

    [119] W. Bao, G. Qian, L. Zhao, Y. Yu, L. Su et al., Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2 through optimized surface coating and doping. Nano Lett. 20, 8832–8840 (2020).

    [120] J. Zhao, J. Zhang, P. Hu, J. Ma, X. Wang et al., A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim. Acta 188, 23–30 (2016).

    [121] M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016).

    [122] L.-X. Li, R. Li, Z.-H. Huang, M.-Q. Liu, J. Xiang et al., High-performance gel electrolyte for enhanced interface compatibility and lithium metal stability in high-voltage lithium battery. Colloids Surf. A Physicochem. Eng. Aspects 651, 129665 (2022).

    [123] Y. Liu, Y. Xu, Porous membrane host-derived in situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chem. Eng. J. 433, 134471 (2022).

    [124] Z. Geng, Y. Huang, G. Sun, R. Chen, W. Cao et al., In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 91, 106679 (2022).

    [125] J. Ma, X. Feng, Y. Wu, Y. Wang, P. Liu et al., Stable sodium anodes for sodium metal batteries (SMBs) enabled by in situ formed quasi solid-state polymer electrolyte. J. Energy Chem. 77, 290–299 (2023).

    [126] S. Song, W. Gao, G. Yang, Y. Zhai, J. Yao et al., Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Mater. Today Energy 23, 100893 (2022).

    [127] K. Khan, Z. Tu, Q. Zhao, C. Zhao, L.A. Archer, Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability. Chem. Mater. 31, 8466–8472 (2019).

    [128] J. Yu, X. Lin, J. Liu, J.T.T. Yu, M.J. Robson et al., In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932 (2022).

    [129] H. Yang, M.-X. Jing, H.-P. Li, W.-Y. Yuan, B. Deng et al., ‘Environment-friendly’ polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chem. Eng. J. 421, 129710 (2021).

    [130] Z.K. Liu, J. Guan, H.X. Yang, P.X. Sun, N.W. Li et al., Ternary-salt solid polymer electrolyte for high-rate and long-life lithium metal batteries. Chem. Commun. 58, 10973–10976 (2022).

    [131] L.-X. Li, R. Li, Z.-H. Huang, H. Yang, M.-Q. Liu et al., A multifunctional gradient solid electrolyte remarkably improving interface compatibility and ion transport in solid-state lithium battery. ACS Appl. Mater. Interfaces 14, 30786–30795 (2022).

    [132] J. Ma, Y. Wu, H. Jiang, X. Yao, F. Zhang et al., In situ directional polymerization of poly(1, 3-dioxolane) solid electrolyte induced by cellulose paper-based composite separator for lithium metal batteries. Energy Environ. Mater. 6, 12370 (2023).

    [133] X. Li, L. Cong, S. Ma, S. Shi, Y. Li et al., Low resistance and high stable solid–liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries. Adv. Funct. Mater. 31, 2010611 (2021).

    [134] B. Han, P. Jiang, S. Li, X. Lu, Functionalized gel polymer electrolyte membrane for high performance Li metal batteries. Solid State Ion. 361, 115572 (2021).

    [135] J. Sun, X. Yao, Y. Li, Q. Zhang, C. Hou et al., Composite solid electrolytes: facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 10, 2070131 (2020).

    [136] Y. Liu, Y. Xu, Y. Zhang, C. Yu, X. Sun, Thin Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1, 3-dioxolane) for lithium metal batteries. J. Colloid Interface Sci. 644, 53–63 (2023).

    [137] D. Chen, M. Zhu, P. Kang, T. Zhu, H. Yuan et al., Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv. Sci. 9, e2103663 (2022).

    [138] Y. Li, W. Zhang, Q. Dou, K.W. Wong, K.M. Ng, Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 7, 3391–3398 (2019).

    [139] Z. Shen, J. Zhong, J. Chen, W. Xie, K. Yang et al., SiO2 nanofiber composite gel polymer electrolyte by in situ polymerization for stable Li metal batteries. Chin. Chemical Lett. 34, 107370 (2023).

    [140] D. Lin, W. Liu, Y. Liu, H.R. Lee, P.C. Hsu et al., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016).

    [141] Y.-Y. Lin, Y.-M. Chen, S.-S. Hou, J.-S. Jan, Y.-L. Lee et al., Diode-like gel polymer electrolytes for full-cell lithium ion batteries. J. Mater. Chem. A 5, 17476–17481 (2017).

    [142] L.-H. Chen, Z.-Y. Huang, S.-L. Chen, R.-A. Tong, H.-L. Wang et al., In situ polymerization of 1, 3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery. Rare Met. 41, 3694–3705 (2022).

    [143] H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo et al., Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 (2019).

    [144] H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15, 42 (2023).

    [145] Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi et al., All-solid-state batteries: low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater. 29, 1970006 (2019).

    [146] X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin et al., Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, e1806082 (2019).

    [147] Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui et al., Mobile ions in composite solids. Chem. Rev. 120, 4169–4221 (2020).

    [148] L. Han, C. Liao, X. Mu, N. Wu, Z. Xu et al., Flame-retardant ADP/PEO solid polymer electrolyte for dendrite-free and long-life lithium battery by generating Al P-rich SEI layer. Nano Lett. 21, 4447–4453 (2021).

    [149] B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021).

    [150] W. Liu, D. Lin, J. Sun, G. Zhou, Y. Cui, Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016).

    [151] N.W. Utomo, Y. Deng, Q. Zhao, X. Liu, L.A. Archer, Structure and evolution of quasi-solid-state hybrid electrolytes formed inside electrochemical cells. Adv. Mater. 34, e2110333 (2022).

    [152] S. Huo, L. Sheng, W. Xue, L. Wang, H. Xu et al., Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat 5, e12394 (2023).

    [153] S. Xue, S. Yao, M. Jing, L. Zhu, X. Shen et al., Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries. Electrochim. Acta 299, 549–559 (2019).

    [154] S. Li, S. Pang, X. Wu, X. Qian, S. Yao et al., Improve redox activity and cycling stability of the lithium–sulfur batteries via in situ formation of a sponge-like separator modification layer. Int. J. Energy Res. 44, 4933–4943 (2020).

    [155] B. Deng, M.-X. Jing, R. Li, L.-X. Li, H. Yang et al., Integrating high ionic conductive PDOL solid/gel composite electrolyte for enhancement of interface combination and lithium dentrite inhibition of solid-state lithium battery. J. Colloid Interface Sci. 620, 199–208 (2022).

    [156] Z. Zhuang, Y. Tang, B. Ju, F. Tu, In situ synthesis of graphitic C3N4–poly(1, 3-dioxolane) composite interlayers for stable lithium metal anodes. Sustain. Energy Fuels 5, 2433–2440 (2021).

    [157] X. Wang, X. Shen, P. Zhang, A.-J. Zhou, J.-B. Zhao, Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Met. 42, 875–884 (2023).

    [158] P. Yao, B. Zhu, H. Zhai, X. Liao, Y. Zhu et al., PVDF/palygorskite nanowire composite electrolyte for 4 V rechargeable lithium batteries with high energy density. Nano Lett. 18, 6113–6120 (2018).

    [159] J. Wu, T. Zhou, B. Zhong, Q. Wang, W. Liu et al., Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 27873–27881 (2022).

    [160] J. Fu, X. Ji, J. Chen, L. Chen, X. Fan et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew. Chem. Int. Ed. 59, 22194–22201 (2020).

    [161] F. Chen, M.-X. Jing, H. Yang, W.-Y. Yuan, M.-Q. Liu et al., Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics 27, 1101–1111 (2021).

    [162] J. Li, L. Zhu, J. Zhang, M. Jing, S. Yao et al., Approaching high performancePVDF-HFPbased solid composite electrolytes withLLTOnanorods for solid-state lithium-ion batteries. Int. J. Energy Res. 45, 7663–7674 (2021).

    [163] W.-W. Shao, J.-X. Li, L. Zhong, H.-F. Wu, M.-Q. Liu et al., A high ion conductive solid electrolyte film and interface stabilization strategy for solid-state Li–S battery. Colloids Surf. A Physicochem. Eng. Aspects 679, 132593 (2023).

    [164] L. Han, L. Wang, Z. Chen, Y. Kan, Y. Hu et al., Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review. Adv. Funct. Mater. 33, 2300892 (2023).

    [165] C.-B. Jin, N. Yao, Y. Xiao, J. Xie, Z. Li et al., Taming solvent–solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries. Adv. Mater. 35, 2208340 (2023).

    [166] J. Zhou, H. Ji, Y. Qian, J. Liu, T. Yan et al., Molecular simulations guided polymer electrolyte towards superior low-temperature solid lithium-metal batteries. ACS Appl. Mater. Interfaces 13, 48810–48817 (2021).

    [167] L.E. Camacho-Forero, P.B. Balbuena, Effects of charged interfaces on electrolyte decomposition at the lithium metal anode. J. Power. Sources 472, 228449 (2020).

    [168] F. Liu, T. Li, Y. Yang, J. Yan, N. Li et al., Investigation on the copolymer electrolyte of poly(1, 3-dioxolane-co-formaldehyde). Macromol. Rapid Commun. 41, e2000047 (2020).

    [169] Y. Du, L. Zhao, C. Xiong, Z. Sun, S. Liu et al., Ameliorating structural and electrochemical properties of traditional poly-dioxolane electrolytes via integrated design of ultra-stable network for solid-state batteries. Energy Storage Mater. 56, 310–318 (2023).

    [170] J. Cui, Y. Du, L. Zhao, X. Li, Z. Sun et al., Thermal stable poly-dioxolane based electrolytes via a robust crosslinked network for dendrite-free solid-state li-metal batteries. Chem. Eng. J. 461, 141973 (2023).

    [171] D.F. Miranda, C. Versek, M.T. Tuominen, T.P. Russell, J.J. Watkins, Cross-linked Block copolymer/ionic liquid self-assembled blends for polymer gel electrolytes with high ionic conductivity and mechanical strength. Macromolecules 46, 9313–9323 (2013).

    [172] S. Chen, B. Chen, J. Fan, J. Feng, Exploring the application of sustainable poly(propylene carbonate) copolymer in toughening epoxy thermosets. ACS Sustain. Chem. Eng. 3, 2077–2083 (2015).

    [173] J. Qin, W. Luo, M. Li, P. Chen, S. Wang et al., A novel multiblock copolymer of CO2-based PPC-mb-PBS: from simulation to experiment. ACS Sustain. Chem. Eng. 5, 5922–5930 (2017).

    [174] J.H. Han, J.Y. Lee, D.H. Suh, Y.T. Hong, T.-H. Kim, Electrode-impregnable and cross-linkable poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock polymer electrolytes with high ionic conductivity and a large voltage window for flexible solid-state supercapacitors. ACS Appl. Mater. Interfaces 9, 33913–33924 (2017).

    Hua Yang, Maoxiang Jing, Li Wang, Hong Xu, Xiaohong Yan, Xiangming He. PDOL-Based Solid Electrolyte Toward Practical Application: Opportunities and Challenges[J]. Nano-Micro Letters, 2024, 16(1): 127
    Download Citation