• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210001 (2023)
Wenhan Yang and Miao Liao*
Author Affiliations
  • School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • show less
    DOI: 10.3788/LOP221369 Cite this Article Set citation alerts
    Wenhan Yang, Miao Liao. Fusion of Attention Mechanism and Deformable Residual Convolution for Liver Tumor Segmentation[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210001 Copy Citation Text show less
    Structure of improved U-Net model
    Fig. 1. Structure of improved U-Net model
    Structure of residual convolution module
    Fig. 2. Structure of residual convolution module
    Structure of RBE module
    Fig. 3. Structure of RBE module
    Schematic of deformable convolution. (a) Traditional convolution kernel; (b) deformable convolution kernel
    Fig. 4. Schematic of deformable convolution. (a) Traditional convolution kernel; (b) deformable convolution kernel
    Dual attentional structure model
    Fig. 5. Dual attentional structure model
    Structure of channel attention
    Fig. 6. Structure of channel attention
    Partial images of LITS dataset
    Fig. 7. Partial images of LITS dataset
    Data pre-processing. (a) Original CT image; (b) segmentation result of ribs and spine; (c) cropping diagram; (d) pre-processed image
    Fig. 8. Data pre-processing. (a) Original CT image; (b) segmentation result of ribs and spine; (c) cropping diagram; (d) pre-processed image
    Visual comparison of probability graphs of different methods
    Fig. 9. Visual comparison of probability graphs of different methods
    Segmentation results of different networks
    Fig. 10. Segmentation results of different networks
    ModuleDice /%VOE /%RVD /%ASD /mmMSSD /mm
    U-Net71.848.5-25.32.449.13
    U-Net+new skip-connection73.147.2-22.12.019.01
    U-Net+dual attention79.337.2-11.51.698.13
    U-Net+deformable Conv76.840.1-12.41.567.92
    U-Net+RBE82.036.7-7.31.347.32
    U-Net+ deformable Conv + dual attention81.938.8-8.71.427.54
    U-Net+RBE+deformable Conv+dual attention83.835.3-6.21.297.21
    U-Net+all modules85.232.4-3.20.986.61
    Table 1. Comparison results of ablation experiments
    MethodDice /%VOE /%RVD /%ASD /mmMSSD /mm
    U-Net1471.848.5-25.32.429.13
    BS-Unet1575.144.0-23.41.738.54
    A-Unet1776.240.6-14.41.427.92
    U-Net++1880.837.2-10.71.267.12
    U-Net3+2081.236.9-11.21.317.41
    MDCC-Unet2683.934.1-6.61.227.53
    proposed method85.232.2-3.20.986.61
    Table 2. Performance comparison of different methods on LITS test set
    MethodDice /%VOE /%RVD /%ASD /mmMSSD /mm
    RA-UNet2759.538.9-15.21.2896.775
    Method in Ref.[2867.045.04.06.66057.930
    Method in Ref.[2267.634.1-6.4
    Method in Ref.[2973.6937.80-15.78
    MA-Net3074.921.0-18.0
    CUResNets3175.237.9-15.9
    Method in Ref.[3283.3211.62-15.98
    Proposed method85.232.2-3.20.986.61
    Table 3. Performance comparison with other methods on LITS dataset
    Wenhan Yang, Miao Liao. Fusion of Attention Mechanism and Deformable Residual Convolution for Liver Tumor Segmentation[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210001
    Download Citation