Wenhan Yang, Miao Liao. Fusion of Attention Mechanism and Deformable Residual Convolution for Liver Tumor Segmentation[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210001

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 60, Issue 12, 1210001 (2023)

Fig. 1. Structure of improved U-Net model

Fig. 2. Structure of residual convolution module

Fig. 3. Structure of RBE module

Fig. 4. Schematic of deformable convolution. (a) Traditional convolution kernel; (b) deformable convolution kernel

Fig. 5. Dual attentional structure model

Fig. 6. Structure of channel attention

Fig. 7. Partial images of LITS dataset

Fig. 8. Data pre-processing. (a) Original CT image; (b) segmentation result of ribs and spine; (c) cropping diagram; (d) pre-processed image

Fig. 9. Visual comparison of probability graphs of different methods

Fig. 10. Segmentation results of different networks
|
Table 1. Comparison results of ablation experiments
|
Table 2. Performance comparison of different methods on LITS test set
|
Table 3. Performance comparison with other methods on LITS dataset

Set citation alerts for the article
Please enter your email address