[1] Parikh N D, Pillai A. Recent advances in hepatocellular carcinoma treatment[J]. Clinical Gastroenterology and Hepatology, 19, 2020-2024(2021).
[2] Liu L P, Wang L, Xu D et al. CT image segmentation method of liver tumor based on artificial intelligence enabled medical imaging[J]. Mathematical Problems in Engineering, 2021, 9919507(2021).
[3] Baâzaoui A, Barhoumi W, Ahmed A et al. Semi-automated segmentation of single and multiple tumors in liver CT images using entropy-based fuzzy region growing[J]. Innovation and Research in BioMedical Engineering, 2, 98-108(2017).
[4] Xia Y Q, Qiao S H, Ye Q Q. Automatic liver segmentation method based on deep learning and region growing algorithm[J]. International Journal of Performability Engineering, 16, 1900-1909(2020).
[5] Zhang Y, Wu J, Jiang B X et al. Deep learning and unsupervised fuzzy C-means based level-set segmentation for liver tumor[C], 1193-1196(2020).
[6] Yang Z, Zhao Y Q, Liao M et al. Semi-automatic liver tumor segmentation with adaptive region growing and graph cuts[J]. Biomedical Signal Processing and Control, 68, 102670(2021).
[7] Amina T, Lakhdar L, Hakim B et al. Improved active contour model through automatic initialisation: liver segmentation[C], 771-775(2021).
[8] Shao X X, Lin X M, Shang T T. Liver CT image segmentation algorithm research based on CV model[C], 1889-1892(2017).
[9] Priya V, Biju V G. SVM based liver tumor classification from computerized tomography images[J]. International Journal of Advanced Engineering and Nano Technology, 2, 31-36(2015).
[10] Devi R M, Seenivasagam V. Automatic segmentation and classification of liver tumor from CT image using feature difference and SVM based classifier-soft computing technique[J]. Soft Computing, 24, 18591-18598(2020).
[11] Ranjbarzadeh R, Saadi S B. Automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering[J]. Measurement, 150, 107086(2020).
[12] Rela M, Nagaraja S, Ramana P. Liver tumor segmentation using superpixel based fast fuzzy C means clustering[J]. International Journal of Advanced Computer Science and Applications, 11, 380-387(2020).
[13] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).
[14] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[15] Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C], 565-571(2016).
[16] Li S, Tso G K F, He K J. Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation[J]. Expert Systems with Applications, 145, 113131(2020).
[17] Schlemper J, Oktay O, Schaap M et al. Attention gated networks: learning to leverage salient regions in medical images[J]. Medical Image Analysis, 53, 197-207(2019).
[18] Zhou Z W, Siddiquee M M R, Tajbakhsh N et al. UNet++: a nested U-Net architecture for medical image segmentation[M]. Stoyanov D, Taylor Z, Carneiro G, et al. Deep learning in medical image analysis and multimodal learning for clinical decision support. Lecture notes in computer science, 11045, 3-11(2018).
[19] Li C, Tan Y S, Chen W et al. ANU-Net: attention-based nested U-Net to exploit full resolution features for medical image segmentation[J]. Computers & Graphics, 90, 11-20(2020).
[20] Huang H M, Lin L F, Tong R F et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C], 1055-1059(2020).
[21] Gao F, Yan B, Chen J et al. Liver tumor segmentation based on dilated convolution of stacked tree aggregation structure[J]. Acta Optica Sinica, 41, 1810002(2021).
[22] Liu Y M, Xiao Z Y. Automatic segmentation algorithm of liver tumor based on feature fusion[J]. Laser & Optoelectronics Progress, 58, 1417001(2021).
[23] Dai J F, Qi H Z, Xiong Y W et al. Deformable convolutional networks[C], 764-773(2017).
[25] Selver M A, Kocaoğlu A, Demir G K et al. Patient oriented and robust automatic liver segmentation for pre-evaluation of liver transplantation[J]. Computers in Biology and Medicine, 38, 765-784(2008).
[26] Xu C C, Hu D, Zhang Y D et al. Study on the segmentation method of multi-phase CT liver tumor based on dual channel U-nets[J]. Journal of Physics: Conference Series, 1828, 012043(2021).
[27] Jin Q G, Meng Z P, Sun C M et al. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Frontiers in Bioengineering and Biotechnology, 8, 605132(2020).
[29] Tran S T, Cheng C H, Liu D G. A multiple layer U-net, Un-net, for liver and liver tumor segmentation in CT[J]. IEEE Access, 9, 3752-3764(2021).
[30] Fan T L, Wang G L, Li Y et al. MA-net: a multi-scale attention network for liver and tumor segmentation[J]. IEEE Access, 8, 179656-179665(2020).
[31] Xi X F, Wang L, Sheng V S et al. Cascade U-ResNets for simultaneous liver and lesion segmentation[J]. IEEE Access, 8, 68944-68952(2020).
[32] Huang Y J, Shi Z F, Wang Z Q et al. Improved U-Net based on mixed loss function for liver medical image segmentation[J]. Laser & Optoelectronics Progress, 57, 221003(2020).