[1] N SETTER, D DAMJANOVIC, L ENG et al. Ferroelectric thin films: review of materials, properties, and applications. Journal of Applied Physics, 051606(2006).
[2] J F SCOTT. Applications of modern ferroelectrics. Science, 954(2007).
[4] B H PARK, B S KANG, S D BU et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 682(1999).
[5] Z ZHOU, T CHEN, X DONG. Research progress of perovskite layer structured piezoelectric ceramics with super high Curie temperature. Journal of Inorganic Materials, 251(2018).
[6] C A P DE ARAUJO, J D CUCHIARO, L D MCMILLAN et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 627(1995).
[7] Y ZHANG, C LI, J LI et al. Enhancing speed and stability of polarization reversal in predominantly
[8] S BLAKE, M FALCONER, M MCREEDY et al. Cation disorder in ferroelectric Aurivillius phases of the type Bi2ANb2O9 (A = Ba, Sr, Ca). Journal of Materials Chemistry, 1609(1997).
[9] H IRIE, M MIYAYAMA, T KUDO. Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals. Journal of Applied Physics, 4089(2001).
[10] V A ISUPOV. Two types of ABi2B2O9 layered perovskite-like ferroelectrics. Inorganic Materials, 976(2006).
[11] R L WITHERS, J G THOMPSON, A D RAE. The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6. Journal of Solid State Chemistry, 404(1991).
[12] R E NEWNHAM, R W WOLFE, J F DORRIAN. Structural basis of ferroelectricity in the bismuth titanate family. Materials Research Bulletin, 1029(1971).
[13] Y SHIMAKAWA, Y KUBO, Y NAKAGAWA et al. Crystal structure and ferroelectric properties of ABi2Ta2O9 (A = Ca, Sr, and Ba). Physical Review B, 6559(2000).
[14] A Z SIMOES, A RIES, C S RICCARDI et al. High Curie point CaBi2Nb2O9 thin films: a potential candidate for lead-free thin-film piezoelectrics. Journal of Applied Physics, 299(2006).
[15] A Z SIMOES, M A RAMIREZ, A RIES et al. Microwave synthesis of calcium bismuth niobate thin films obtained by the polymeric precursor method. Materials Research Bulletin, 1461(2006).
[16] Y L WANG, J OUYANG. Orienting high Curie point CaBi2Nb2O9 ferroelectric ferroelectric films on Si at 500 ℃. Ceramics International, 20818(2019).
[17] Y AHN, J JANG, J Y SON. Ferroelectric properties of lead-free polycrystalline CaBi2Nb2O9 thin films on glass substrates. AIP Advances, 035123(2016).
[18] Y ZHANG, C M WANG, Y LI et al. Enhancing electromechanical properties of CaBi2Nb2O9 thin films grown on Si. Ceramics International, 17928(2016).
[19] Y LI, Y HAO, M JU et al. Significantly enhanced electrostrain in oriented epitaxial self-assembled Aurivillius-type piezoelectric films
[20] Y ZHANG, J OUYANG, J ZHANG et al. Strain engineered CaBi2Nb2O9 thin films with enhanced electrical properties. ACS Applied Materials & Interfaces, 16744(2016).
[21] H N LEE, D HEESSE, N ZAKHAROV et al. Ferroelectric Bi3.25La0.75Ti3O12 films of uniform
[23] H S CHO, S B DESU. Structural and electrical properties of oriented ferroelectric CaBi2Nb2O9 thin films deposited on n+-Si (100) by pulsed laser deposition. Physica Status Solidi Applied Research, 371(1997).
[24] Y LI, Z YU, Z FU et al. Epitaxial growth mechanism and ferroelectric property of
[25] C J LU, Y QIAO, Y J QI et al. Large anisotropy of ferroelectric and dielectric properties for Bi3.15Nd0.85Ti3O12 thin films deposited on Pt/Ti/SiO2/Si. Applied Physics Letters, 222901(2005).
[26] H J YAO, Y LI, J H LUO et al. Epitaxial growth of perovskite oxide SrTiO3/BaTiO3 multilayer films on SrTiO3 substrate. Journal of Functional Materials, 2890(2004).