• Acta Optica Sinica
  • Vol. 43, Issue 19, 1912001 (2023)
Xinxu Cui1, Chao Fang1,*, and Zhi Wang1,2,**
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033,Jilin , China
  • 2School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences , Hangzhou 310024, Zhejiang , China
  • show less
    DOI: 10.3788/AOS230675 Cite this Article Set citation alerts
    Xinxu Cui, Chao Fang, Zhi Wang. Influence of Installation and Adjustment Error of Gravitational Wave Telescope on TTL Noise[J]. Acta Optica Sinica, 2023, 43(19): 1912001 Copy Citation Text show less
    References

    [1] Matthew P. Gravitational wave detection by interferometry[D], 5-12(2011).

    [2] Cattani C, De Maria M et al. Conservation laws and gravitational waves in general relativity[J]. The attraction of gravitation: new studies in the history of general relativity, 5, 63-68(1993).

    [3] Chen C M, Nester J M, Ni W T. A brief history of gravitational wave research[J]. Chinese Journal of Physics, 55, 142-169(2017).

    [4] Sankar S R, Livas J C. Optical telescope design for a space-based gravitational-wave mission[J]. Proceedings of SPIE, 9143, 914314(2014).

    [5] Gohlke M, Schuldt T, Weise D et al. A high sensitivity heterodyne interferometer as a possible optical readout for the LISA gravitational reference sensor and its application to technology verification[J]. Proceedings of SPIE, 10566, 1056612(2017).

    [6] Verlaan A L, Hogenhuis H, Pijnenburg J et al. Lisa telescope assembly optical stability characterization for ESA[J]. Proceedings of SPIE, 8450, 845003(2013).

    [7] Tröbs M, Schuster S, Lieser M et al. Reducing tilt-to-length coupling for the LISA test mass interferometer[J]. Classical and Quantum Gravity, 35, 105001(2018).

    [8] Gudrun W. Complex optical systems in space: numerical modelling of the heterodyne interferometry of LISA Pathfinder and LISA[D], 135-155(2010).

    [9] Sanjuán J, Korytov D, Mueller G et al. Note: Silicon carbide telescope dimensional stability for space-based gravitational wave detectors[J]. Review of Scientific Instruments, 83, 116107(2012).

    [10] Bender P. Wavefront distortion and beam pointing for LISA[J]. Classical and Quantum Gravity, 22, 339-346(2005).

    [11] Vinet J Y, Christensen N, Dinu-Jaeger N et al. LISA telescope: phase noise due to pointing jitter[J]. Classical and Quantum Gravity, 36, 205003(2019).

    [12] Macewen H A, Fazio G G, Lystrup M et al. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. Proceedings of SPIE, 9904, 99041K(2016).

    [13] Livas J, Sankar S. Optical telescope design study results[J]. IPO Publishing, 610, 012029(2015).

    [14] Escudero Sanz I, Heske A, Livas J. A telescope for LISA–the laser interferometer space antenna[J]. Advanced Optical Technologies, 7, 395-400(2018).

    [15] Sonke S. Investigation of the coupling between beam tilt and longitudinal pathlength signal in laser interferometers[D], 13-33(2013).

    [16] Chen S N, Jiang H L, Wang C Y et al. Design of off-axis four-mirror afocal optical system with high magnification[J]. Chinese Journal of Optics, 13, 179-188(2020).

    [17] Schuster S. Tilt-to-length coupling and diffraction aspects in satellite interferometry[D](2017).

    [18] Wang Z, Yu T, Zhao Y et al. Research on telescope TTL coupling noise in intersatellite laser interferometry[J]. Photonic Sensors, 10, 265-274(2020).

    [19] Yu D Y, Tan H Y[M]. Engineering optics(2012).

    Xinxu Cui, Chao Fang, Zhi Wang. Influence of Installation and Adjustment Error of Gravitational Wave Telescope on TTL Noise[J]. Acta Optica Sinica, 2023, 43(19): 1912001
    Download Citation