• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 2, 22007 (2023)
, , , ..., , , , and *|Show fewer author(s)
Author Affiliations
  • Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/acc8a1 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Fabrication and applications of van der Waals heterostructures[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 22007 Copy Citation Text show less
    References

    [1] Chang C et al 2021 Recent progress on two-dimensional materials Acta Phys. Chim. Sin. 37 2108017

    [2] Wang Z Y, Cheon C Y, Tripathi M, Marega G M, Zhao Y F, Ji H G, Macha M, Radenovic A and Kis A 2021 Superconducting 2D NbS2 grown epitaxially by chemical vapor deposition ACS Nano 15 18403–10

    [3] Deng K et al 2019 Crossover from 2D metal to 3D Dirac semimetal in metallic PtTe2 films with local Rashba effect Sci. Bull. 64 1044–8

    [4] Rossnagel K, Rotenberg E, Koh H, Smith N V and Kipp L 2005 Fermi surface, charge-density-wave gap, and kinks in 2H.TaSe2 Phys. Rev. B 72 121103

    [5] Mak K F and Shan J 2016 Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides Nat. Photon. 10 216–26

    [6] Wu S X, Hui K S and Hui K N 2018 2D black phosphorus: from preparation to applications for electrochemical energy storage Adv. Sci. 5 1700491

    [7] Lin Y and Connell J W 2012 Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene Nanoscale 4 6908–39

    [8] Parkinson G S 2021 Adding oxides to the 2D toolkit Nat. Mater. 20 1041–2

    [9] HuZM et al 2017 Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method Nat. Commun. 8 15630

    [10] Liu L X and Zhai T Y 2021 Wafer-scale vertical van der Waals heterostructures InfoMat 3 3–21

    [11] ZhuYZ,PengWC,LiY, ZhangGL,ZhangFBand Fan X B 2019 Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications J. Mater. Chem. A 7 23577–603

    [12] Liu Y, Huang Y and Duan X F 2019 Van der Waals integration before and beyond two-dimensional materials Nature 567 323–33

    [13] Dean C R et al 2010 Boron nitride substrates for high-quality graphene electronics Nat. Nanotechnol. 5 722–6

    [14] Wang L et al 2013 One-dimensional electrical contact to a two-dimensional material Science 342 614–7

    [15] Mayorov A S et al 2011 Micrometer-scale ballistic transport in encapsulated graphene at room temperature Nano Lett. 11 2396–9

    [16] Cui X et al 2015 Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform Nat. Nanotechnol. 10 534–40

    [17] Liu Y et al 2015 Toward barrier free contact to molybdenum disulfide using graphene electrodes Nano Lett. 15 3030–4

    [18] LiLK et al 2016 Quantum Hall effect in black phosphorus two-dimensional electron system Nat. Nanotechnol. 11 593–7

    [19] Bandurin D A et al 2017 High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe Nat. Nanotechnol. 12 223–7

    [20] Arora H and Erbe A 2021 Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe InfoMat 3 662–93

    [21] Island J O, Steele G A, van der Zant H S J and Castellanos-Gomez A 2015 Environmental instability of few-layer black phosphorus 2D Mater. 2 011002

    [22] Britnell L et al 2012 Field-effect tunneling transistor based on vertical graphene heterostructures Science 335 947–50

    [23] Britnell L et al 2013 Strong light-matter interactions in heterostructures of atomically thin films Science 340 1311–4

    [24] Georgiou T et al 2013 Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics Nat. Nanotechnol. 8 100–3

    [25] Yu W J, Li Z, Zhou H L, Chen Y, Wang Y, Huang Y and Duan X F 2013 Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters Nat. Mater. 12 246–52

    [26] Mehr W, Dabrowski J, Scheytt J C, Lippert G, Xie Y H, Lemme M C, Ostling M and Lupina G 2012 Vertical graphene base transistor IEEE Electron Device Lett. 33 691–3

    [27] LiQY, Tao QY, ChenY, KongLG,ShuZW, DuanHG, Liao L and Liu Y 2021 Low voltage and robust InSe memristor using van der Waals electrodes integration Int. J. Extreme Manuf. 3 045103

    [28] Vaziri S, Lupina G, Henkel C, Smith A D, O¨stling M, Dabrowski J, Lippert G, Mehr W and Lemme M C 2013 A graphene-based hot electron transistor Nano Lett. 13 1435–9

    [29] Zeng C F, Song E B, Wang M S, Lee S, Torres C M Jr, Tang J S, Weiller B H and Wang K L 2013 Vertical graphene-base hot-electron transistor Nano Lett. 13 2370–5

    [30] Long M et al 2017 Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus Sci. Adv. 3 e1700589

    [31] LiuBL et al 2015 Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties Adv. Mater. 27 4423–9

    [32] Long M S et al 2019 Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability ACS Nano 13 2511–9

    [33] Bullock J et al 2018 Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature Nat. Photon. 12 601–7

    [34] Withers F et al 2015 Light-emitting diodes by band-structure engineering in van der Waals heterostructures Nat. Mater. 14 301–6

    [35] Chen F R et al 2022 Mass transfer techniques for large-scale and high-density microLED arrays Int. J. Extreme Manuf. 4 042005

    [36] LiuRY, ZhouCL,ZhangY, CuiZ,Wu XHandYiHL 2022 Near-field radiative heat transfer in hyperbolic materials Int. J. Extreme Manuf. 4 032002

    [37] Wu F C, Lovorn T, Tutuc E, Martin I and MacDonald A H 2019 Topological insulators in twisted transition metal dichalcogenide homobilayers Phys. Rev. Lett. 122 086402

    [38] Finney N R, Yankowitz M, Muraleetharan L, Watanabe K, Taniguchi T, Dean C R and Hone J 2019 Tunable crystal symmetry in graphene–boron nitride heterostructures with coexisting moiré superlattices Nat. Nanotechnol. 14 1029–34

    [39] Yu HD,XueYR,HuiL,ZhangC,ZhaoYJ,LiZBand Li Y L 2018 Controlled growth of MoS2 nanosheets on 2D N-doped graphdiyne nanolayers for highly associated effects on water reduction Adv. Funct. Mater. 28 1707564

    [40] Xiong P, Ma R Z, Sakai N, Nurdiwijayanto L and Sasaki T 2018 Unilamellar metallic MoS2/graphene superlattice for efficient sodium storage and hydrogen evolution ACS Energy Lett. 3 997–1005

    [41] Naik M H and Jain M 2018 Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides Phys. Rev. Lett. 121 266401

    [42] Orlita M et al 2014 Observation of three-dimensional massless Kane fermions in a zinc-blende crystal Nat. Phys. 10 233–8

    [43] Mishchenko A et al 2014 Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures Nat. Nanotechnol. 9 808–13

    [44] Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S and Eaves L 2013 Resonant tunnelling and negative differential conductance in graphene transistors Nat. Commun. 4 1794

    [45] HeF, ZhouYJ,Ye ZF, ChoSH,JeongJ,MengXHand Wang Y G 2021 Moiré patterns in 2D materials: a review ACS Nano 15 5944–58

    [46] Jariwala D, Marks T J and Hersam M C 2017 Mixed-dimensional van der Waals heterostructures Nat. Mater. 16 170–81

    [47] Avsar A et al 2014 Spin-orbit proximity effect in graphene Nat. Commun. 5 4875

    [48] Dean C R et al 2013 Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices Nature 497 598–602

    [49] Fallahazad B et al 2015 Gate-tunable resonant tunneling in double bilayer graphene heterostructures Nano Lett. 15 428–33

    [50] Lin Y-C et al 2015 Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures Nat. Commun. 6 7311

    [51] HanSS et al 2020 Automated assembly of wafer-scale 2D TMD heterostructures of arbitrary layer orientation and stacking sequence using water dissoluble salt substrates Nano Lett. 20 3925–34

    [52] Xiong P, Ma R Z, Sakai N and Sasaki T 2018 Genuine unilamellar metal oxide nanosheets confined in a superlattice-like structure for superior energy storage ACS Nano 12 1768–77

    [53] JinXY, ShinSJ,KimJ,LeeNS,KimHandHwangSJ 2018 Heterolayered 2D nanohybrids of uniformly stacked transition metal dichalcogenide–transition metal oxide monolayers with improved energy-related functionalities J. Mater. Chem. A 6 15237–44

    [54] Fan ZM,WangYS,XieZM,WangDL,Yuan Y, KangHJ, Su B L, Cheng Z J and Liu Y Y 2018 Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage Adv. Sci. 5 1800750

    [55] Boandoh S et al 2019 Wafer-scale van der Waals heterostructures with ultraclean interfaces via the aid of viscoelastic polymer ACS Appl. Mater. Interfaces 11 1579–86

    [56] Kwon K C et al 2016 Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production Energy Environ. Sci. 9 2240–8

    [57] Bonaccorso F, Lombardo A, Hasan T, Sun Z P, Colombo L and Ferrari A C 2012 Production and processing of graphene and 2D crystals Mater. Today 15 564–89

    [58] Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K and Dekker C 2010 Wedging transfer of nanostructures Nano Lett. 10 1912–6

    [59] LeeJS et al 2018 Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation Science 362 817–21

    [60] XueYZ et al 2016 Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors ACS Nano 10 573–80

    [61] ChenCM,FengZH,FengYY, Yue YC,QinCQ, Zhang D H and Feng W 2016 Large-scale synthesis of a uniform film of bilayer MoS2 on graphene for 2D heterostructure phototransistors ACS Appl. Mater. Interfaces 8 19004–11

    [62] Zhou N, Wang R Y, Zhou X, Song H Y, Xiong X, Ding Y, Lü J T, Gan L and Zhai T Y 2018 P-GaSe/N-MoS2 vertical heterostructures synthesized by van der Waals epitaxy for photoresponse modulation Small 14 1702731

    [63] Irisawa T, Okada N, Chang W H, Okada M, Mori T, Endo T and Miyata Y 2020 CVD grown bilayer WSe2/MoSe2 heterostructures for high performance tunnel transistors Jpn. J. Appl. Phys. 59 SGGH05

    [64] LiXH,RenX,LiuXJ,ZhaoJX,SunX,ZhangY, Kuang X, Yan T, Wei Q and Wu D 2019 A MoS2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions J. Mater. Chem. A 7 2524–8

    [65] Qian X Y, Ding J F, Zhang J L, Zhang Y, Wang Y N, Kan E J, Wang X and Zhu J W 2018 Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution Nanoscale 10 1766–73

    [66] LiZH,DuanHH,ShaoMF, LiJB,O’HareD, WeiMand Wang Z L 2018 Ordered-vacancy-induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors Chem 4 2168–79

    [67] HeR,HuaJ,ZhangAQ,WangCH,PengJY, ChenWJand Zeng J 2017 Molybdenum disulfide–black phosphorus hybrid nanosheets as a superior catalyst for electrochemical hydrogen evolution Nano Lett. 17 4311–6

    [68] Anasori B, Lukatskaya M R and Gogotsi Y 2017 2D metal carbides and nitrides (MXenes) for energy storage Nat. Rev. Mater. 2 16098

    [69] Yang J, Voiry D, Ahn S J, Kang D, Kim A Y, Chhowalla M and Shin H S 2013 Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution Angew. Chem. 125 13996–9

    [70] GuoYX et al 2021 MoO3–MoS2 vertical heterostructures synthesized via one-step CVD process for optoelectronics 2D Mater. 8 035036

    [71] Qiao J-B et al 2017 One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α.Mo2C Phys. Rev. B 95 201403

    [72] ZhangCH,ZhaoSL,JinCH,KohAL,ZhouY, XuWG, Li Q C, Xiong Q H, Peng H L and Liu Z F 2015 Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method Nat. Commun. 6 6519

    [73] Frisenda R, Navarro-Moratalla E, Gant P, De Lara D P, Jarillo-Herrero P, Gorbachev R V and Castellanos-Gomez A 2018 Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials Chem. Soc. Rev. 47 53–68

    [74] LiZW et al 2021 Dry exfoliation of large-area 2D monolayer and heterostructure arrays ACS Nano 8 13839–46

    [75] Li J et al 2020 General synthesis of two-dimensional van der Waals heterostructure arrays Nature 579 368–74

    [76] Chaturvedi A et al 2020 A universal method for rapid and large-scale growth of layered crystals SmartMat 1 e1011

    [77] Cai Z Y, Liu B L, Zou X L and Cheng H M 2018 Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures Chem. Rev. 118 6091–133

    [78] Muratore C, Voevodin A A and Glavin N R 2019 Physical vapor deposition of 2D van der Waals materials: a review Thin Solid Films 688 137500

    [79] Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Muller D A and Park J 2012 Graphene and boron nitride lateral heterostructures for atomically thin circuitry Nature 488 627–32

    [80] Kim S M, Hsu A, Araujo P T, Lee Y H, Palacios T, Dresselhaus M, Idrobo J C, Kim K K and Kong J 2013 Synthesis of patched or stacked graphene and hBN flakes: a route to hybrid structure discovery Nano Lett. 13 933–41

    [81] Li X et al 2016 Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy Sci. Adv. 2 e1501882

    [82] Yang R X, Chen X Y, Ke W and Wu X 2022 Recent research progress in the structure, fabrication, and application of MXene-based heterostructures Nanomaterials 12 1907

    [83] WangSX,CuiXH,JianC,ChengHW, NiuMM,Yu J, Yan J X and Huang W 2021 Stacking-engineered heterostructures in transition metal dichalcogenides Adv. Mater. 33 e2005735

    [84] Prabhu P, Jose V and Lee J M 2020 Design strategies for development of TMD-based heterostructures in electrochemical energy systems Matter 2 526–53

    [85] Cheng Q L et al 2020 WSe2 2D p-type semiconductor-based electronic devices for information technology: design, preparation, and applications InfoMat 2 656–97

    [86] ZhangEW, LinFR,LeiZH,QiS,BanSY, VinuA,YiJB and Liu Y P 2021 Twist the doorknob to open the electronic properties of graphene-based van der Waals structure Matter 4 3444–82

    [87] Guo H W, Hu Z, Liu Z B and Tian J G 2020 Stacking of 2D materials Adv. Funct. Mater. 31 2007810

    [88] RenYZ,ZhangL,ZhuXK,LiHM,DongQZandLiuS 2022 Synthesis of transition metal dichalcogenide van der Waals heterostructures through chemical vapor deposition J. Phys. Condens. Matter 34 254002

    [89] Zhang T and Fu L 2018 Controllable chemical vapor deposition growth of two-dimensional heterostructures Chem 4 671–89

    [90] JiaLN,Wu JY, ZhangYN,QuY, JiaBH,ChenZGand Moss D J 2022 Fabrication technologies for the on-chip integration of 2D materials Small Methods 6 e2101435

    [91] Wang P Q and Duan X F 2021 Probing and pushing the limit of emerging electronic materials via van der Waals integration MRS Bull. 46 534–46

    [92] Lau C N, Bockrath M W, Mak K F and Zhang F 2022 Reproducibility in the fabrication and physics of moiré materials Nature 602 41–50

    [93] Khan J, Ahmad R T M, Tan J Y, Zhang R J, Khan U and Liu B L 2023 Recent advances in 2D organic.inorganic heterostructures for electronics and optoelectronics SmartMat 4 e1156

    [94] Yu XT, WangX,ZhouFF, QuJLandSongJ20212D van der Waals heterojunction nanophotonic devices: from fabrication to performance Adv. Funct. Mater. 31 2104260

    [95] He J S, Wang C, Zhou B, Zhao Y, Tao L L and Zhang H 2020 2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics Mater. Horiz. 7 2903–21

    [96] Mei J, Liao T and Sun Z Q 2022 2D/2D heterostructures: rational design for advanced batteries and electrocatalysis Energy Environ. Mater. 5 115–32

    [97] Xie L M 2015 Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications Nanoscale 7 18392–401

    [98] Giri A, Yang H, Thiyagarajan K, Jang W, Myoung J M, Singh R, Soon A, Cho K and Jeong U 2017 One-step solution phase growth of transition metal dichalcogenide thin films directly on solid substrates Adv. Mater. 29 1700291

    [99] TangL,LiT, LuoYT, FengSM,CaiZY, ZhangH,LiuBL and Cheng H M 2020 Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides ACS Nano 14 4646–53

    [100] IslamMS,KimM,JinXY, OhSM,LeeNS,KimHand Hwang S J 2018 Bifunctional 2D superlattice electrocatalysts of layered double hydroxide–transition metal dichalcogenide active for overall water splitting ACS Energy Lett. 3 952–60

    [101] Fan S D, Vu Q A, Tran M D, Adhikari S and Lee Y H 2020 Transfer assembly for two-dimensional van der Waals heterostructures 2D Mater. 7 022005

    [102] Reina A, Son H, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J 2008 Transferring and identification of single-and few-layer graphene on arbitrary substrates J. Phys. Chem. C 112 17741–4

    [103] Yuan J et al 2018 Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection ACS Appl. Mater. Interfaces 10 40614–22

    [104] Calado V E, Schneider G F, Theulings A M M G, Dekker C and Vandersypen L M K 2012 Formation and control of wrinkles in graphene by the wedging transfer method Appl. Phys. Lett. 101 103116

    [105] Huang D, Choi J, Shih C K and Li X Q 2022 Excitons in semiconductor moiré superlattices Nat. Nanotechnol. 17 227–38

    [106] Zomer P J, Dash S P, Tombros N and Van Wees B J 2011 A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride Appl. Phys. Lett. 99 232104

    [107] Hunt B et al 2013 Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure Science 340 1427–30

    [108] Kang K, Lee K H, Han Y M, Gao H, Xie S E, Muller D A and Park J 2017 Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures Nature 550 229–33

    [109] Qin L, Kattel B, Kafle T R, Alamri M, Gong M G, Panth M, Hou Y B, Wu J and Chan W L 2019 Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer Adv. Mater. 6 1801419

    [110] RanJR,GuoWW,WangHL,ZhuBC,YuJGandQiaoSZ 2018 Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production Adv. Mater. 30 e1800128

    [111] Kochaev A, Katin K, Maslov M and Singh S 2022 Covalent and van der Waals interactions in a vertical heterostructure composed of boron and carbon Phys. Rev. B 105 235444

    [112] WangSY, Yu DS,DaiLM,ChangDWandBaekJB2011 Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction ACS Nano 5 6202–9

    [113] GaoXX,YinJ,BianG,LiuHY, WangCP, PangXXand Zhu J 2020 High-mobility patternable MoS2 percolating nanofilms Nano Res. 14 2255–63

    [114] Kwon N H, Jin X Y, Kim S J, Kim H and Hwang S J 2022 Multilayer conductive hybrid nanosheets as versatile hybridization matrices for optimizing the defect structure, structural ordering, and energy-functionality of nanostructured materials Adv. Sci. 9 e2103042

    [115] Yan J, Ren C E, Maleski K, Hatter C B, Anasori B, Urbankowski P, Sarycheva A and Gogotsi Y 2017 Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance Adv. Funct. Mater. 27 1701264

    [116] Sun J, Lee H W, Pasta M, Yuan H T, Zheng G Y, Sun Y M, Li Y Z and Cui Y 2015 A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries Nat. Nanotechnol. 10 980–5

    [117] Lee D H, Sim Y, Wang J and Kwon S Y 2020 Metal–organic chemical vapor deposition of 2D van der Waals materials—the challenges and the extensive future opportunities APL Mater. 8 030901

    [118] Kim H G and Lee H B R 2017 Atomic layer deposition on 2D materials Chem. Mater. 29 3809–26

    [119] Dong J C, Zhang L N, Dai X Y and Ding F 2020 The epitaxy of 2D materials growth Nat. Commun. 11 5862

    [120] Lokman M Q, Yusoff S F A Z, Ahmad F, Zakaria R, Yahaya H, Shafie S, Rosnan R M and Harun S W 2018 Deposition of silver nanoparticles on polyvinyl alcohol film using electron beam evaporation and its application as a passive saturable absorber Results Phys. 11 232–6

    [121] Kim H-U et al 2019 Low-temperature wafer-scale growth of MoS2-graphene heterostructures Appl. Surf. Sci. 470 129–34

    [122] Wang P Q, Jia C C, Huang Y and Duan X F 2021 Van der Waals heterostructures by design: from 1D and 2D to 3D Matter 4 552–81

    [123] Kiraly B, Liu X L, Wang L Q, Zhang Z H, Mannix A J, Fisher B L, Yakobson B I, Hersam M C and Guisinger N P 2019 Borophene synthesis on Au(111) ACS Nano 13 3816–22

    [124] Wu R T, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Boˇzovi′c I and Gozar A 2019 Large-area single-crystal sheets of borophene on Cu (111) surfaces Nat. Nanotechnol. 14 44–49

    [125] Zhong Q, Zhang J, Cheng P, Feng B J, Li W B, Sheng S X, Li H, Meng S, Chen L and Wu K H 2017 Metastable phases of 2D boron sheets on Ag(1 1 1) J. Phys. Condens. Matter 29 095002

    [126] Yang S J, Choi S, Odongo Ngome F O, Kim K J, Choi S and Kim C J 2019 All-dry transfer of graphene film by van der Waals interactions Nano Lett. 19 3590–6

    [127] Vinogradov N A, Lyalin A, Taketsugu T, Vinogradov A S and Preobrajenski A 2019 Single-phase borophene on Ir(111): formation, structure, and decoupling from the support ACS Nano 13 14511–8

    [128] Feijó T O, Copetti G, Gerling E R F, Hanke M, Lopes J M J, Radtke C and Soares G V 2021 The role of substrate on the growth of 2D heterostructures by CVD Appl. Surf. Sci. 539 148226

    [129] Wu CR,ChangXR,ChuTW, ChenHA,Wu CHand Lin S Y 2016 Establishment of 2D crystal heterostructures by sulfurization of sequential transition metal depositions: preparation, characterization, and selective growth Nano Lett. 16 7093–7

    [130] Bradford J, Shafiei M, MacLeod J and Motta N 2020 Synthesis and characterization of WS2/graphene/SiC van der Waals heterostructures via WO3.x thin film sulfurization Sci. Rep. 10 17334

    [131] Li S H, Wang Y, Cheng P, Feng B J, Chen L and Wu K H 2021 Realization of large scale, 2D van der Waals heterojunction of SnS2/SnS by reversible sulfurization Small 17 2101154

    [132] Li Z H, Zhang X, Cheng H F, Liu J W, Shao M F, Wei M, Evans D G, Zhang H and Duan X 2020 Confined synthesis of 2D nanostructured materials toward electrocatalysis Adv. Energy Mater. 10 1900486

    [133] Yao Y, JinZW, ChenYH,GaoZF, Yan JQ,LiuHB, Wang J Z, Li Y L and Liu S Z 2018 Graphdiyne-WS2 2D-nanohybrid electrocatalysts for high-performance hydrogen evolution reaction Carbon 129 228–35

    [134] Wang D, Xing W Y, Song L and Hu Y 2016 Space-confined growth of defect-rich molybdenum disulfide nanosheets within graphene: application in the removal of smoke particles and toxic volatiles ACS Appl. Mater. Interfaces 8 34735–43

    [135] LiuYH,LiuQZ,ZhangAY, CaiJS,CaoX,LiZ, Asimow P D and Zhou C W 2018 Room-temperature pressure synthesis of layered black phosphorus–graphene composite for sodium-ion battery anodes ACS Nano 12 8323–9

    [136] Huang Y J, Liang J, Wang C, Yin S J, Fu W Y, Zhu H W and Wan C L 2020 Hybrid superlattices of two-dimensional materials and organics Chem. Soc. Rev. 49 6866–83

    [137] Zhang Y, Zhang L Y and Zhou C W 2013 Review of chemical vapor deposition of graphene and related applications Acc. Chem. Res. 46 2329–39

    [138] Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 25th anniversary article: mXenes: a new family of two-dimensional materials Adv. Mater. 26 992–1005

    [139] Backes C, Berner N C, Chen X, Lafargue P, LaPlace P, Freeley M, Duesberg G S, Coleman J N and McDonald A R 2015 Functionalization of liquid-exfoliated two-dimensional 2H-MoS2 Angew. Chem., Int. Ed. 54 2638–42

    [140] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets Nat. Chem. 5 263–75

    [141] Gao X Q, Qi J, Wan S H, Zhang W, Wang Q and Cao R 2018 Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution Small 14 1803361

    [142] Shao M F, Zhang R K, Li Z H, Wei M, Evans D G and Duan X 2015 Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications Chem. Commun. 51 15880–93

    [143] Wang C et al 2018 Monolayer atomic crystal molecular superlattices Nature 555 231–6

    [144] Sahoo P K, Memaran S, Xin Y, Balicas L and Gutiérrez H R 2018 One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy Nature 553 63–67

    [145] Asen P, Haghighi M, Shahrokhian S and Taghavinia N 2019 One step synthesis of SnS2-SnO2 nano-heterostructured as an electrode material for supercapacitor applications J. Alloys Compd. 782 38–50

    [146] Yao K L, Li J, Shan S Y and Jia Q M 2017 One-step synthesis of urchinlike SnS/SnS2 heterostructures with superior visible-light photocatalytic performance Catal. Commun. 101 51–56

    [147] ZhuYQ,ZhaoJC,LiLJ,MaoJF, XuJLandJinJ2020 One-step solvothermal synthesis of BiSbTe3/N-doped reduced graphene oxide composite as lithium-ion batteries anode materials Chem. Eng. Sci. 225 115829

    [148] Desai S B et al 2016 MoS2 transistors with 1-nanometer gate lengths Science 354 99–102

    [149] Schulman D S, Arnold A J and Das S 2018 Contact engineering for 2D materials and devices Chem. Soc. Rev. 47 3037–58

    [150] Liu L T et al 2021 Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors Nat. Electron. 4 342–7

    [151] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y and Ren T L 2022 Vertical MoS2 transistors with sub-1-nm gate lengths Nature 603 259–64

    [152] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 A subthermionic tunnel field-effect transistor with an atomically thin channel Nature 526 91–95

    [153] Miao J et al 2022 Heterojunction tunnel triodes based on two-dimensional metal selenide and three-dimensional silicon Nat. Electron. 5 744–51

    [154] Lee C-H et al 2014 Atomically thin p–n junctions with van der Waals heterointerfaces Nat. Nanotechnol. 9 676–81

    [155] Yan R S et al 2015 Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment Nano Lett. 15 5791–8

    [156] Wang F, Wang Z X, Xu K, Wang F M, Wang Q S, Huang Y, Yin L and He J 2015 Tunable GaTe-MoS2 van der Waals p–n junctions with novel optoelectronic performance Nano Lett. 15 7558–66

    [157] Lory P-F et al 2017 Direct measurement of individual phonon lifetimes in the clathrate compound Ba7.81Ge40.67Au5.33 Nat. Commun. 8 491

    [158] Yan X,LiuCS,LiC,BaoWZ,DingSJ,ZhangDWand Zhou P 2017 Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor Small 13 1701478

    [159] Jung Y et al 2019 Transferred via contacts as a platform for ideal two-dimensional transistors Nat. Electron. 2 187–94

    [160] Liu Y, Guo J, Zhu E B, Liao L, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y and Duan X F 2018 Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions Nature 557 696–700

    [161] Chuang H J, Tan X B, Ghimire N J, Perera M M, Chamlagain B, Cheng M M C, Yan J Q, Mandrus D, Tománek D and Zhou Z X 2014 High mobility WSe2 p-and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts Nano Lett. 14 3594–601

    [162] Lee G-H et al 2015 Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage ACS Nano 9 7019–26

    [163] Zhao B et al 2019 Van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors Nano Res. 12 1683–9

    [164] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Phase-engineered low-resistance contacts for ultrathin MoS2 transistors Nat. Mater. 13 1128–34

    [165] Castellanos-Gomez A, Duan X F, Fei Z, Gutierrez H R, Huang Y, Huang X Y, Quereda J, Qian Q, Sutter E and Sutter P 2022 Van der Waals heterostructures Nat. Rev. Methods Primers 2 58

    [166] Cho S et al 2015 Phase patterning for ohmic homojunction contact in MoTe2 Science 349 625–8

    [167] DuanXD,WangC,Pan AL,Yu RQandDuanXF2015 Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges Chem. Soc. Rev. 44 8859–76

    [168] Zhang S M et al 2022 Lateral layered semiconductor multijunctions for novel electronic devices Chem. Soc. Rev. 51 4000–22

    [169] Zha J J et al 2021 Infrared photodetectors based on 2D materials and nanophotonics Adv. Funct. Mater. 32 2111970

    [170] Long M S et al 2016 Broadband photovoltaic detectors based on an atomically thin heterostructure Nano Lett. 16 2254–9

    [171] XiaFN,WangH,HwangJCM,NetoAHCandYangL 2019 Black phosphorus and its isoelectronic materials Nat. Rev. Phys. 1 306–17

    [172] Gao A Y et al 2019 Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures Nat. Nanotechnol. 14 217–22

    [173] YinZY, ZhuJX,HeQY, CaoXH,Tan CL,ChenHY, Yan Q Y and Zhang H 2014 Graphene-based materials for solar cell applications Adv. Energy Mater. 4 1300574

    [174] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 2D materials and van der Waals heterostructures Science 353 aac9439

    [175] Wu ZX,QiJL,WangWB,ZengZYandHeQY2021 Emerging elemental two-dimensional materials for energy applications J. Mater. Chem. A 9 18793–817

    [176] YangXW, ZhangXL,LuZS,YangZXandWu RQ2021 Design of highly stable and efficient bifunctional MXene-based electrocatalysts for oxygen reduction and evolution reactions Phys. Rev. Appl. 15 044053

    [177] Zhu C R, Gao D Q, Ding J, Chao D L and Wang J 2018 TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches Chem. Soc. Rev. 47 4332–56

    [178] Obayi C S and Nnamchi P S 2021 Mixed transition metal oxides for photoelectrochemical hydrogen production Chemically Deposited Nanocrystalline Metal Oxide Thin Films ed F I Ezema, C D Lokhande and R Jose (Cham: Springer) pp 279–92

    [179] Wang W B et al 2022 Preparation of 2D molybdenum phosphide via surface-confined atomic substitution Adv. Mater. 34 2203220

    [180] HeYM et al 2020 Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction Nat. Commun. 11 57

    [181] HeYM et al 2019 Self-gating in semiconductor electrocatalysis Nat. Mater. 18 1098–104

    [182] Wu XH,WangZY, Yu MZ,XiuLandQiuJS2017 Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability Adv. Mater. 29 1607017

    [183] Wang Y Z et al 2019 Environmentally-friendly exfoliate and active site self-assembly: thin 2D/2D heterostructure amorphous nickel–iron alloy on 2D materials for efficient oxygen evolution reaction Small 15 1805435

    [184] Yuan ZK,LiJ,YangMJ,FangZS,JianJH,Yu DS, Chen X D and Dai L M 2019 Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer J. Am. Chem. Soc. 141 4972–9

    [185] ZhangDL,MouHY, LuF, SongCXandWangDB2019A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting Appl. Catal. B 254 471–8

    [186] ShuHB,LiF, HuCL,LiangP, CaoDandChenXS2016 The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries Nanoscale 8 2918–26

    [187] ChenY, LaiZC,ZhangX,Fan ZX,HeQY, Tan CLand Zhang H 2020 Phase engineering of nanomaterials Nat. Rev. Chem. 4 243–56

    [188] Zheng X, Wang S, Xiong C X and Hu G H 2018 In situ growth of 1T-MoS2 on liquid-exfoliated graphene: a unique graphene-like heterostructure for superior lithium storage Carbon 133 162–9

    [189] Chang K and Chen W X 2011 l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries ACS Nano 5 4720–8

    [190] WangLL,ZhangQF, ZhuJY, DuanXD,XuZ,LiuYT, Yang H G and Lu B G 2019 Nature of extra capacity in MoS2 electrodes: molybdenum atoms accommodate with lithium Energy Storage Mater. 16 37–45

    [191] ZhaoCY, WangX,KongJH,AngJM,LeePS,LiuZLand Lu X H 2016 Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: a novel van der Waals heterostructure for lithium-ion batteries ACS Appl. Mater. Interfaces 8 2372–9

    [192] Shan X Y, Zhang N, Zheng R D, Gao H and Zhang X T 2019 One-pot synthesis of SL-MoS2/C/Ti3C2Tx@C hierarchical superstructures for ultralong cycle-life Li-ion batteries Electrochim. Acta 295 286–93

    [193] Mei J, Zhang Y W, Liao T, Peng X M, Ayoko G A and Sun Z Q 2019 Black phosphorus nanosheets promoted 2D-TiO2-2D heterostructured anode for high-performance lithium storage Energy Storage Mater. 19 424–31

    [194] David L, Bhandavat R and Singh G 2014 MoS2/graphene composite paper for sodium-ion battery electrodes ACS Nano 8 1759–70

    [195] XieXQ,AoZM,SuDW, ZhangJQandWangGX2015 MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface Adv. Funct. Mater. 25 1393–403

    [196] Yang W X, Zhou J H, Wang S, Zhang W Y, Wang Z C, Lv F, Wang K, Sun Q and Guo S J 2019 Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage Energy Environ. Sci. 12 1605–12

    [197] SunD,Ye DL,LiuP, TangYG,GuoJ,WangLZand Wang H Y 2018 MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries Adv. Energy Mater. 8 1702383

    [198] Li M Y, Muralidharan N, Moyer K and Pint C L 2018 Solvent mediated hybrid 2D materials: black phosphorus—graphene heterostructured building blocks assembled for sodium ion batteries Nanoscale 10 10443–9

    [199] Xiong P et al 2018 Two-dimensional unilamellar cation-deficient metal oxide nanosheet superlattices for high-rate sodium ion energy storage ACS Nano 12 12337–46

    [200] Ou X, Cao L, Liang X H, Zheng F H, Zheng H S, Yang X F, Wang J H, Yang C H and Liu M L 2019 Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial Coulombic efficiency and cycling stability ACS Nano 13 3666–76

    [201] Geim A K and Grigorieva I V 2013 Van der Waals heterostructures Nature 499 419–25

    [202] Pospischil A, Furchi M M and Mueller T 2014 Solar-energy conversion and light emission in an atomic monolayer p–n diode Nat. Nanotechnol. 9 257–61

    [203] Deng Y X, Luo Z, Conrad N J, Liu H, Gong Y J, Najmaei S, Ajayan P M,Lou J, Xu X FandYe P D2014 Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode ACS Nano 8 8292–9

    [204] Fl.ry N, Jain A, Bharadwaj P, Parzefall M, Taniguchi T, Watanabe K and Novotny L 2015 A WSe2/MoSe2 heterostructure photovoltaic device Appl. Phys. Lett. 107 123106

    [205] Choi S, Ahn J, Ahn I H, Hwang D K and Park M C 2022 Integral imaging using a MoS2 Schottky diode Opt. Lett. 47 866–9

    [206] Li B, Huang L, Zhong M Z, Li Y, Wang Y, Li J B and Wei Z M 2016 Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch Adv. Electron. Mater. 2 1600298

    [207] SungJH,ChaS,HeoH,SimS,KimJ,ChoiHandJoMH 2017 Ultrafast hot-carrier photovoltaics of type-I monolayer heterojunctions in the broad spectral ranges ACS Photonics 4 429–34

    [208] Yang S X et al 2016 Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure ACS Appl. Mater. Interfaces 8 2533–9

    [209] HeQY, LiuY, Tan CL,ZhaiW, NamGHandZhangH 2019 Quest for p-type two-dimensional semiconductors ACS Nano 13 12294–300

    [210] Zheng B Y et al 2018 Band alignment engineering in two-dimensional lateral heterostructures J. Am. Chem. Soc. 140 11193–7

    [211] Duan X D et al 2014 Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions Nat. Nanotechnol. 9 1024–30

    [212] Frisenda R, Molina-Mendoza A J, Mueller T, Castellanos-Gomez A and van der Zant H S J 2018 Atomically thin p–n junctions based on two-dimensional materials Chem. Soc. Rev. 47 3339–58

    [213] Wang L, Huang L, Tan W C, Feng X W, Chen L, Huang X and Ang K W 2018 2D photovoltaic devices: progress and prospects Small Methods 2 1700294

    [214] Paul K K, Kim J H and Lee Y H 2021 Hot carrier photovoltaics in van der Waals heterostructures Nat. Rev. Phys. 3 178–92

    [215] Gong J, Hao M W, Zhang Y L, Liu M Z and Zhou Y Y 2022 Layered 2D halide perovskites beyond the ruddlesden–popper phase: tailored interlayer chemistries for high-performance solar cells Angew. Chem., Int. Ed. 61 e202112022

    [216] Cao Y et al 2018 Correlated insulator behaviour at half-filling in magic-angle graphene superlattices Nature 556 80–84

    [217] Bistritzer R and MacDonald A H 2011 Moiré bands in twisted double-layer graphene Proc. Natl Acad. Sci. USA 108 12233–7

    [218] Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Unconventional superconductivity in magic-angle graphene superlattices Nature 556 43–50

    [219] Tran K et al 2019 Evidence for moiré excitons in van der Waals heterostructures Nature 567 71–75

    [220] Jin C H et al 2019 Observation of moiré excitons in WSe2/WS2 heterostructure superlattices Nature 567 76–80

    [221] Peng G et al 2020 Controllable epitaxial growth of MoSe2 bilayers with different stacking orders by reverse-flow chemical vapor deposition ACS Appl. Mater. Interfaces 12 23347–55

    [222] ZhangXM,NanHY, XiaoSQ,Wan X,GuXF, DuAJ, Ni Z H and Ostrikov K 2019 Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy Nat. Commun. 10 598

    [223] Ang Y S, Chen Y Y, Tan C and Ang L K 2019 Generalized high-energy thermionic electron injection at graphene interface Phys. Rev. Appl. 12 014057

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Fabrication and applications of van der Waals heterostructures[J]. International Journal of Extreme Manufacturing, 2023, 5(2): 22007
    Download Citation