• Chinese Optics Letters
  • Vol. 23, Issue 3, 033701 (2025)
Xuan Yu1, Fei Yu2, Sheng Liu1, Cheng Lei1,*, and Du Wang1,**
Author Affiliations
  • 1The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
  • 2Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/COL202523.033701 Cite this Article Set citation alerts
    Xuan Yu, Fei Yu, Sheng Liu, Cheng Lei, Du Wang, "Single dielectric layer terahertz tube fiber with negative curvature," Chin. Opt. Lett. 23, 033701 (2025) Copy Citation Text show less
    References

    [1] M. S. Islam, C. M. B. Cordeiro, M. A. R. Franco et al. Terahertz optical fibers [Invited]. Opt. Express, 28, 16089(2020).

    [2] H. Xu, L. Yan, Y. Du et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams. Nat. Photonics, 15, 426(2021).

    [3] A. Stefani, B. T. Kuhlmey, J. Digweed et al. Flexible terahertz photonic light-cage modules for in-core sensing and high temperature applications. ACS Photonics, 9, 2128(2022).

    [4] X. Mei, R. Zha, Y. Pan et al. Dielectric laser accelerators driven by ultrashort, ultraintense long-wave infrared lasers. Ultrafast Sci., 3, 1(2023).

    [5] M. He, J. Zeng, Z. Chen et al. Low-loss flexible polarization-maintaining hollow waveguide for linearly polarized 100 GHz radiation transmission and subwavelength imaging. J. Light. Technol., 40, 6712(2022).

    [6] I. Garrett, C. J. Todd. Components and systems for long-wavelength monomode fibre transmission. Opt. Quantum Electron., 14, 95(1982).

    [7] L. D. van Putten, J. Gorecki, E. Numkam Fokoua et al. 3D-printed polymer antiresonant waveguides for short-reach terahertz applications. Appl. Opt., 57, 3953(2018).

    [8] S. Li, Z. Dai, Z. Wang et al. A 0.1 THz low-loss 3D printed hollow waveguide. Optik, 176, 611(2019).

    [9] W. Talataisong, J. Gorecki, L. D. van Putten et al. Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle. Photonics Res., 9, 1513(2021).

    [10] W. Talataisong, J. Gorecki, R. Ismaeel et al. Singlemoded THz guidance in bendable TOPAS suspended-core fiber directly drawn from a 3D printer. Sci. Rep., 10, 11045(2020).

    [11] N. Phanchat, W. Talataisong, N. Klokkou et al. Extruded TOPAS hollow-core anti-resonant fiber optimized for THz guidance at 0.9 THz. Opt. Express, 30, 13059(2022).

    [12] M. Xiao, J. Liu, W. Zhang et al. Self-supporting polymer pipes for low loss single-mode THz transmission. Opt. Express, 21, 19808(2013).

    [13] W. Wang, D. Bird. Confinement loss of anti-resonant capillaries with curved boundaries. Opt. Express, 29, 25314(2021).

    [14] C.-H. Lai, Y.-C. Hsueh, H.-W. Chen et al. Low-index terahertz pipe waveguides. Opt. Lett., 34, 3457(2009).

    [15] C.-H. Lai, B. You, J.-Y. Lu et al. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. Opt. Express, 18, 309(2010).

    [16] J. R. Hayes, F. Poletti, M. S. Abokhamis et al. Anti-resonant hexagram hollow core fibers. Opt. Express, 23, 1289(2015).

    [17] D. Bird. Attenuation of model hollow-core, anti-resonant fibres. Opt. Express, 25, 23215(2017).

    [18] J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang et al. Bending loss of terahertz pipe waveguides. Opt. Express, 18, 26332(2010).

    [19] S. Yang, X. Sheng, G. Zhao et al. 3D printed effective single-mode terahertz antiresonant hollow core fiber. IEEE Access, 9, 29599(2021).

    [20] Y. Zhong, G. Xie, F. Mao et al. Thin-wall cyclic olefin copolymer tube waveguide for broadband terahertz transmission. Opt. Mater., 98, 109490(2019).

    [21] Y. S. Lee, H. Choi, B. Kim et al. Low-loss polytetrafluoroethylene hexagonal porous fiber for terahertz pulse transmission in the 6G mobile communication window. IEEE Trans. Microw. Theory Tech., 69, 4623(2021).

    [22] J. Yang, J. Zhao, C. Gong et al. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure. Opt. Express, 24, 22454(2016).

    [23] L.-J. Chen, H.-W. Chen, T.-F. Kao et al. Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt. Lett., 31, 308(2006).

    [24] D. Wang. Research of polymer fibers for the terahertz frequency range. International Symposium on Photoelectronic Detection and Imaging 2011 Terahertz Wave Technologies and Applications, 819512(2011).

    [25] C. M. B. Cordeiro, A. K. L. Ng, H. Ebendorff-Heidepriem. Ultra-simplified single-step fabrication of microstructured optical fiber. Sci. Rep., 10, 9678(2020).

    [26] Y. Wang, W. Ding. Confinement loss in hollow-core negative curvature fiber: A multi-layered model. Opt. Express, 25, 33122(2017).

    [27] A. D. Pryamikov, G. K. Alagashev, A. F. Kosolapov et al. Impact of core-cladding boundary shape on the waveguide properties of hollow core microstructured fibers. Laser Phys., 26, 125104(2016).

    [28] W. Ding, Y. Wang. Semi-analytical model for hollow-core anti-resonant fibers. Front. Phys., 3, 1(2015).

    [29] M. S. Islam, C. M. B. Cordeiro, M. J. Nine et al. A. D. Inovitser, B. W. H. Ng, H. Ebendorff-Heidepriem, D. Losic, and D. Abbott. IEEE Access, 8, 97204(2020).

    [30] E. V. Fedulova, M. M. Nazarov, A. A. Angeluts et al. Studying of dielectric properties of polymers in the terahertz frequency range. Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine XIII, 83370I(2012).

    [31] S. Yang, X. Sheng, G. Zhao et al. Anti-deformation low loss double pentagon nested terahertz hollow core fiber. Opt. Fiber Technol., 56, 102199(2020).

    [32] H. P. Uranus, H. J. W. M. Hoekstra. Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions. Opt. Express, 12, 2795(2004).

    [33] L. Vincetti, V. Setti. Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes, 20, 1470(2012).

    [34] E. A. J. Marcatili, R. A. Schmeltzer. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J., 43, 1783(1964).

    [35] M. S. Islam, J. Sultana, J. H. Osório et al. Single-step tabletop fabrication for low-attenuation terahertz special optical fibers. Adv. Photonics Res., 2, 2100165(2021).

    [36] S. Yang, X. Sheng, G. Zhao et al. Novel pentagram THz hollow core anti-resonant fiber using a 3D printer. J. Infrared Millimeter Terahertz Waves, 40, 720(2019).

    [37] J. Sultana, M. S. Islam, C. M. B. Cordeiro et al. Hollow core inhibited coupled antiresonant terahertz fiber: a numerical and experimental study. IEEE Trans. Terahertz Sci. Technol., 11, 245(2021).

    [38] L. Xue, X. Sheng, Q. Mu et al. 3D-printed high-birefringence THz hollow-core anti-resonant fiber with an elliptical core. Opt. Express, 31, 26178(2023).

    Xuan Yu, Fei Yu, Sheng Liu, Cheng Lei, Du Wang, "Single dielectric layer terahertz tube fiber with negative curvature," Chin. Opt. Lett. 23, 033701 (2025)
    Download Citation