• Advanced Photonics
  • Vol. 2, Issue 1, 016001 (2020)
Tengfeng Zhu1, Junyi Huang1, and Zhichao Ruan1,2,*
Author Affiliations
  • 1Zhejiang University, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, Hangzhou, China
  • 2Zhejiang University, College of Optical Science and Engineering, Hangzhou, China
  • show less
    DOI: 10.1117/1.AP.2.1.016001 Cite this Article Set citation alerts
    Tengfeng Zhu, Junyi Huang, Zhichao Ruan, "Optical phase mining by adjustable spatial differentiator," Adv. Photon. 2, 016001 (2020) Copy Citation Text show less
    References

    [1] F. Zernike. How I discovered phase contrast. Science, 121, 345-349(1955).

    [2] R. Allen, G. David, G. Nomarski. The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z. Wiss. Mikrosk. Mikrosk. Tech., 69, 193-221(1969).

    [3] H. Furuhashi, K. Matsuda, C. P. Grover. Visualization of phase objects by use of a differentiation filter. Appl. Opt., 42, 218-226(2003).

    [4] D. Schmidt et al. Optical wavefront differentiation: wavefront sensing for solar adaptive optics based on a LCD. Proc. SPIE, 6584, 658408(2007).

    [5] H. Furuhashi et al. Phase measurement of optical wavefront by an SLM differentiation filter(2009).

    [6] J. A. Davis et al. Image processing with the radial Hilbert transform: theory and experiments. Opt. Lett., 25, 99-101(2000).

    [7] S. Fürhapter et al. Spiral phase contrast imaging in microscopy. Opt. Express, 13, 689-694(2005).

    [8] A. Jesacher et al. Shadow effects in spiral phase contrast microscopy. Phys. Rev. Lett., 94, 233902(2005).

    [9] X. Qiu et al. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica, 5, 208-212(2018).

    [10] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [11] T. Ikeda et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett., 30, 1165-1167(2005).

    [12] G. Popescu et al. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett., 31, 775-777(2006).

    [13] T. J. McIntyre et al. Differential interference contrast imaging using a spatial light modulator. Opt. Lett., 34, 2988-2990(2009).

    [14] C. Zheng et al. Digital micromirror device-based common-path quantitative phase imaging. Opt. Lett., 42, 1448-1451(2017).

    [15] P. Ferraro et al. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. Opt. Lett., 31, 1405-1407(2006).

    [16] C. J. Mann et al. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express, 13, 8693-8698(2005).

    [17] A. Barty et al. Quantitative optical phase microscopy. Opt. Lett., 23, 817-819(1998).

    [18] H. M. L. Faulkner, J. Rodenburg. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett., 93, 023903(2004).

    [19] S. S. Kou et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Opt. Lett., 35, 447-449(2010).

    [20] C. Zuo et al. Noninterferometric single-shot quantitative phase microscopy. Opt. Lett., 38, 3538-3541(2013).

    [21] A. Silva et al. Performing mathematical operations with metamaterials. Science, 343, 160-163(2014).

    [22] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Analog computing using reflective plasmonic metasurfaces. Nano Lett., 15, 791-797(2014).

    [23] L. L. Doskolovich et al. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt. Lett., 39, 1278-1281(2014).

    [24] Z. Ruan. Spatial mode control of surface plasmon polariton excitation with gain medium: from spatial differentiator to integrator. Opt. Lett., 40, 601-604(2015).

    [25] S. Abdollahramezani et al. Analog computing using graphene-based metalines. Opt. Lett., 40, 5239-5242(2015).

    [26] A. Chizari et al. Analog optical computing based on a dielectric meta-reflect array. Opt. Lett., 41, 3451-3454(2016).

    [27] A. Youssefi et al. Analog computing by Brewster effect. Opt. Lett., 41, 3467-3470(2016).

    [28] Y. Hwang, T. J. Davis. Optical metasurfaces for subwavelength difference operations. Appl. Phys. Lett., 109, 181101(2016).

    [29] Y. Fang, Y. Lou, Z. Ruan. On-grating graphene surface plasmons enabling spatial differentiation in the terahertz region. Opt. Lett., 42, 3840-3843(2017).

    [30] W. Wu et al. Multilayered analog optical differentiating device: performance analysis on structural parameters. Opt. Lett., 42, 5270-5273(2017).

    [31] Y. Hwang et al. Plasmonic circuit for second-order spatial differentiation at the subwavelength scale. Opt. Express, 26, 7368-7375(2018).

    [32] T. Zhu et al. Plasmonic computing of spatial differentiation. Nat. Commun., 8, 15391(2017).

    [33] J. Zhang, Q. Ying, Z. Ruan. Time response of plasmonic spatial differentiators. Opt. Lett., 44, 4511-4514(2018).

    [34] Y. Fang, Z. Ruan. Optical spatial differentiator for a synthetic three-dimensional optical field. Opt. Lett., 43, 5893-5896(2018).

    [35] A. Saba et al. Two dimensional edge detection by guided mode resonant metasurface. IEEE Photonics Technol. Lett., 30, 853-856(2018).

    [36] Z. Dong et al. Optical spatial differentiator based on subwavelength high-contrast gratings. Appl. Phys. Lett., 112, 181102(2018).

    [37] A. Roberts, D. E. Gómez, T. J. Davis. Optical image processing with metasurface dark modes. J. Opt. Soc. Am. A, 35, 1575-1584(2018).

    [38] C. Guo et al. Photonic crystal slab Laplace operator for image differentiation. Optica, 5, 251-256(2018).

    [39] H. Kwon et al. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett., 121, 173004(2018).

    [40] T. Zhu et al. Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection. Phys. Rev. Appl., 11, 034043(2019).

    [41] J. Zhou et al. Optical edge detection based on high-efficiency dielectric metasurface. Proc. Natl. Acad. Sci. U. S. A., 116, 11137-11140(2019).

    [42] C. Guo et al. Isotropic wavevector domain image filters by a photonic crystal slab device. J. Opt. Soc. Am. A, 35, 1685-1691(2018).

    [43] A. Momeni et al. Generalized optical signal processing based on multioperator metasurfaces synthesized by susceptibility tensors. Phys. Rev. Appl., 11, 064042(2019).

    [44] T. J. Davis et al. Metasurfaces with asymmetric optical transfer functions for optical signal processing. Phys. Rev. Lett., 123, 013901(2019).

    [45] L. A. Alemán-Castaneda et al. Shearing interferometry via geometric phase. Optica, 6, 396-399(2019).

    [46] J. W. Ra, H. Bertoni, L. Felsen. Reflection and transmission of beams at a dielectric interface. SIAM J. Appl. Math., 24, 396-413(1973).

    [47] C. C. Chan, T. Tamir. Angular shift of a Gaussian beam reflected near the Brewster angle. Opt. Lett., 10, 378-380(1985).

    [48] M. Merano et al. Observing angular deviations in the specular reflection of a light beam. Nat. Photonics, 3, 337-340(2009).

    [49] F. I. Fedorov. K teorii polnogo otrazheniya. Dokl. Akad. Nauk SSSR, 105, 465-468(1955).

    [50] C. Imbert. Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam. Phys. Rev. D, 5, 787-796(1972).

    [51] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [52] N. T. Shaked, Z. Zalevsky, L. L. Satterwhite. Biomedical Optical Phase Microscopy and Nanoscopy(2012).

    [53] M. R. Arnison et al. Linear phase imaging using differential interference contrast microscopy. J. Microsc., 214, 7-12(2004).

    [54] P. Karimi, A. Khavasi, S. S. M. Khaleghi. Fundamental limit for gain and resolution in analog optical edge detection. Opt. Express, 28, 898-911(2020).

    [55] M. W. Davidson. mCerulean fused to the tyrosine kinase C-Src.

    [56] V. A. Belyakov, V. E. Dmitrienko. Polarization phenomena in x-ray optics. Sov. Phys. Usp., 32, 697-719(1989).

    [57] M. Scheinfein et al. Scanning electron microscopy with polarization analysis (SEMPA). Rev. Sci. Instrum., 61, 2501-2527(1990).

    CLP Journals

    [1] Danping Pan, Lei Wan, Min Ouyang, Wei Zhang, Alexander A. Potapov, Weiping Liu, Zixian Liang, Tianhua Feng, Zhaohui Li, "Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum," Photonics Res. 9, 1758 (2021)

    [2] Yi Zhou, Rui Chen, Wen-Jie Chen, Yun-Gui Ma. Advances in spatial analog optical computing devices[J]. Acta Physica Sinica, 2020, 69(15): 157803-1