[1] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).
[2] Danzmann K, Rüdiger A. LISA technology-concept, status, prospects[J]. Classical and Quantum Gravity, 20, S1-S9(2003).
[3] Jennrich O. LISA technology and instrumentation[J]. Classical and Quantum Gravity, 26, 153001(2009).
[5] Luo J, Chen L S, Duan H Z et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 33, 035010(2016).
[6] Luo Z R, Wang Y, Wu Y L et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 05A108(2021).
[7] Luo Z R, Bai S, Bian X et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 43, 415-447(2013).
[8] Xu X, Tan Y D, Mu H L et al. Laser interferometric multi-degree-of-freedom measurement technology in space gravitational-wave detection[J]. Laser & Optoelectronics Progress, 60, 0312006(2023).
[9] Schuldt T, Döringshoff K, Oswald M et al. Absolute laser frequency stabilization for LISA[J]. International Journal of Modern Physics D, 28, 1845002(2019).
[10] McNamara P W, Ward H, Hough J et al. Laser frequency stabilization for spaceborne gravitational wave detectors[J]. Classical and Quantum Gravity, 14, 1543-1547(1997).
[11] Sheard B S, Heinzel G, Danzmann K et al. Intersatellite laser ranging instrument for the GRACE follow-on mission[J]. Journal of Geodesy, 86, 1083-1095(2012).
[12] Thompson R, Folkner W M, de Vine G et al. A flight-like optical reference cavity for GRACE follow-on laser frequency stabilization[C](2011).
[13] Abich K, Abramovici A, Amparan B et al. In-orbit performance of the GRACE follow-on laser ranging interferometer[J]. Physical Review Letters, 123, 031101(2019).
[14] Luo Y X, Li H Y, Li Y Q et al. Prototype of a monolithic cavity-based ultrastable optical reference for space applications[J]. Applied Optics, 60, 2877-2885(2021).
[15] Fritschel P, Weiss R. Frequency match of the Nd∶YAG laser at 1.064 μm with a line in CO2[J]. Applied Optics, 31, 1910-1912(1992).
[16] Mak A A, Muravitsky S G, Orlov O A et al. New laser for interferometry with long-term frequency stabilization at 1.06 μm onto molecular cesium standard[J]. Proceedings of SPIE, 1121, 478-484(1989).
[17] Döringshoff K, Schuldt T, Kovalchuk E V et al. A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm[J]. Applied Physics B, 123, 183(2017).
[18] Döringshoff K, Gutsch F B, Schkolnik V et al. Iodine frequency reference on a sounding rocket[J]. Physical Review Applied, 11, 054068(2019).
[19] McRae T G, Ngo S, Shaddock D A et al. Frequency stabilization for space-based missions using optical fiber interferometry[J]. Optics Letters, 38, 278-280(2013).
[20] Kéfélian F, Jiang H F, Lemonde P et al. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line[J]. Optics Letters, 34, 914-916(2009).
[21] Dong J, Hu Y Q, Huang J C et al. Subhertz linewidth laser by locking to a fiber delay line[J]. Applied Optics, 54, 1152-1156(2015).
[22] Huang J C, Wang L K, Duan Y F et al. All-fiber-based laser with 200 mHz linewidth[J]. Chinese Optics Letters, 17, 071407(2019).
[23] Huang Y F, Hu D, Ye M F et al. All-fiber-based ultrastable laser with long-term frequency stability of 1.1×10-14[J]. Chinese Optics Letters, 21, 031404(2023).
[24] Jiang H F, Kéfélian F, Lemonde P et al. An agile laser with ultra-low frequency noise and high sweep linearity[J]. Optics Express, 18, 3284-3297(2010).
[25] Huang J C, Wang L K, Duan Y F et al. Vibration-insensitive fiber spool for laser stabilization[J]. Chinese Optics Letters, 17, 081403(2019).
[26] Duan L Z. Intrinsic thermal noise of optical fibres due to mechanical dissipation[J]. Electronics Letters, 46, 1515-1516(2010).