• Photonics Research
  • Vol. 8, Issue 12, 1910 (2020)
Jintian Lin1, Fang Bo2,5,*, Ya Cheng1,3,4,6,*, and Jingjun Xu2,7,*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
  • 2The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • 3XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 4Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 5e-mail: bofang@nankai.edu.cn
  • 6e-mail: ycheng@phys.ecnu.edu.cn
  • 7e-mail: jjxu@nankai.edu.cn
  • show less
    DOI: 10.1364/PRJ.395305 Cite this Article Set citation alerts
    Jintian Lin, Fang Bo, Ya Cheng, Jingjun Xu, "Advances in on-chip photonic devices based on lithium niobate on insulator," Photonics Res. 8, 1910 (2020) Copy Citation Text show less
    References

    [1] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits(2012).

    [2] R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman. Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 11, 50-65(2005).

    [3] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson. All-optical control of light on a silicon chip. Nature, 431, 1081-1084(2004).

    [4] A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, T.-Y. Liow. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron., 20, 405-416(2014).

    [5] L. Pavesi. Will silicon be the photonic material of the third millenium. J. Phys. Condens. Matter, 15, R1169-R1196(2003).

    [6] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [7] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [8] W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, J. Yao. A fully reconfigurable photonic integrated signal processor. Nat. Photonics, 10, 190-195(2016).

    [9] R. Nagarajan, M. Kato, D. Lambert, P. Evans, S. Corzine, V. Lal, J. Rahn, A. Nilsson, M. Fisher, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, D. Krause, H. Sun, K.-T. Wu, M. Ziari, T. Butrie, M. Reffle, M. Mitchell, F. Kish, D. Welch. Terabit/s class InP photonic integrated circuits. Semicond. Sci. Technol., 27, 094003(2012).

    [10] L. Junqiu, E. Lucas, A. S. Rasa, J. He, J. Riemensberger, N. R. Wang, M. Karpov, H. Guo, R. Bouchand, T. J. Kippenberg. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [11] W. D. Sacher, Y. Huang, G.-Q. Lo, J. K. S. Poon. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightwave Technol., 33, 901-910(2015).

    [12] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [13] C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, K.-J. Boller. Silicon nitride microwave photonic circuits. Opt. Express, 21, 22937-22961(2013).

    [14] L. Splitthoff, M. A. Wolff, T. Grottke, C. Schuck. Tantalum pentoxide nanophotonic circuits for integrated quantum technology. Opt. Express, 28, 11921-11932(2020).

    [15] M. Belt, M. L. Davenport, J. E. Bowers, D. J. Blumenthal. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates. Optica, 4, 532-536(2017).

    [16] P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton. Polymer micro-ring filters and modulators. J. Lightwave Technol., 20, 1968-1975(2002).

    [17] O. Alibart, V. D’Auria, M. D. Micheli, F. Doutrev, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, S. Tanzilli. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt., 18, 104001(2016).

    [18] H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, S. N. Zhu. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett., 113, 103601(2014).

    [19] Q. Li, Q. Wu, Y. Li, C. Zhang, Z. Jia, J. Yao, J. Sun, J. Xu. Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating. Photon. Res., 6, 789-793(2018).

    [20] B. Zhang, S. Li, S. Chai, X. Wu, J. Ma, L. Chen, Y. Li. Nonlinear distortion and spatial dispersion of intense terahertz generation in lithium niobate via the tilted pulse front technique. Photon. Res., 6, 959-964(2018).

    [21] Q. Zhang, M. Li, J. Xu, Z. Lin, H. Yu, M. Wang, Z. Fang, Y. Cheng, Q. Gong, Y. Li. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photon. Res., 7, 503-507(2019).

    [22] F. Chen. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys., 106, 081101(2009).

    [23] G. Poberaj, H. Hu, W. Sohler, P. Guenter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 6, 488-503(2012).

    [24] H. Hu, J. Yang, L. Gui, W. Sohler. Lithium niobate-on-insulator (LNOI): status and perspectives. Proc. SPIE, 8431, 84311D(2012).

    [25] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [26] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [27] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photon. Rev., 14, 2000088(2020).

    [28] M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, H. Bakhru. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293-2295(1998).

    [29] P. Rabiei, P. Günter. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett., 85, 4603-4605(2004).

    [30] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics, 1, 407-410(2007).

    [31] J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, Y. Cheng. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).

    [32] J. Zhou, R. Gao, J. Lin, M. Wang, W. Chu, W. Li, D. Yin, L. Deng, Z. Fang, J. Zhang, R. Wu, Y. Cheng. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).

    [33] R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8(2018).

    [34] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [35] J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, Y. Cheng. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep., 5, 8072(2015).

    [36] R. Wang, S. A. Bhave. Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators(2014).

    [37] J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072-23078(2015).

    [38] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, M. Lončar. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924-30933(2014).

    [39] J. Lin, Y. Xu, Z. Fang, J. Song, N. Wang, L. Qiao, W. Fang, Y. Cheng. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining(2014).

    [40] J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, Y. Cheng. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Sci. China Phys. Mech. Astron., 58, 114209(2015).

    [41] H. Liang, R. Luo, Y. He, H. Jiang, Q. Lin. High-quality lithium niobate photonic crystal nanocavities. Optica, 4, 1251-1258(2017).

    [42] R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, E.-B. Kley. Light propagation in a free-standing lithium niobate photonic crystal waveguide. Appl. Phys. Lett., 97, 131109(2010).

    [43] F. Sulser, G. Poberaj, M. Koechlin, P. Günter. Photonic crystal structures in ion-sliced lithium niobate thin films. Opt. Express, 17, 20291-20300(2009).

    [44] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [45] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li, X. Xiao, S. Yu, S. Yu, X. Cai. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [46] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [47] A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, D. W. Prather. 110  GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express, 24, 15590-15595(2016).

    [48] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, M. Lončar. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    [49] Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, A. H. Safavi-Naeini. Piezoelectric transduction of a wavelength-scale mechanical waveguide. Phys. Rev. Appl., 13, 024069(2020).

    [50] W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. V. Laer, A. H. Safavi-Naeini. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845-853(2019).

    [51] J. Lin, N. Yao, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [52] I. W. Frank, J. Moore, J. K. Douglas, R. Camacho, M. Eichenfield. Entangled photon generation in lithium niobate microdisk resonators through spontaneous parametric down conversion. Conference on Lasers and Electro-Optics (CLEO), SM2E.6(2016).

    [53] R. Luo, H. Jiang, S. Rogers, H. Liang, Y. He, Q. Lin. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express, 25, 24531-24539(2017).

    [54] Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y.-X. Gong, Z. Xie, S. Zhu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [55] J. Lu, J. B. Surya, X. Liu, Y. Xu, H. X. Tang. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett., 44, 1492-1495(2019).

    [56] A. Rao, N. Nader, M. J. Stevens, T. Gerrits, O. S. Magaña-Loaiza, G. F. Camacho-González, J. Chiles, A. Honardoost, M. Malinowski, R. Mirin, S. Fathpour. Photon pair generation on a silicon chip using nanophotonic periodically-poled lithium niobate waveguides. Conference on Lasers and Electro-Optics (CLEO), JTh3C.2(2018).

    [57] Z. Gong, X. Liu, Y. Xu, M. Xu, J. B. Surya, J. Lu, A. Bruch, C. Zou, H. X. Tang. Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. Opt. Lett., 44, 3182-3185(2019).

    [58] Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, Q. Lin. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [59] K. Jia, X. Wang, X. Ni, J. Guo, Z. Xie, S.-W. Huang, S.-N. Zhu. 2  μm microcomb generation from a monolithic lithium niobate optical parametric oscillator. Conference on Lasers and Electro-Optics (CLEO), SM3L.7(2020).

    [60] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, M. Lončar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [61] M. Xu, M. He, X. Cai. Generation of flat optical frequency comb using integrated cascaded lithium niobate modulators. Conference on Lasers and Electro-Optics (CLEO), STh1O.5(2020).

    [62] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lončar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [63] D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics, 14, 24-29(2020).

    [64] A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picque, M. Loncar. An integrated lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy(2020).

    [65] Z. Yu, Y. Tong, H. K. Tsang, X. Sun. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).

    [66] T.-J. Wang, C.-H. Chu, C.-Y. Lin. Electro-optically tunable microring resonators on lithium niobate. Opt. Lett., 32, 2777-2779(2007).

    [67] M. Prost, G. Liu, S. J. B. Yoo. A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIs. Optical Fiber Communications Conference and Exposition (OFC), 1-3(2018).

    [68] S. Fathpour. Heterogeneous nonlinear integrated photonics. IEEE J. Quantum Electron., 54, 6300716(2018).

    [69] M. Jin, J.-Y. Chen, Y. M. Sua, Y.-P. Huang. High-extinction electro-optic modulation on lithium niobate thin film. Opt. Lett., 44, 1265-1268(2019).

    [70] A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, S. Fathpour. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Opt. Lett., 41, 5700-5703(2016).

    [71] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100  Gbit s–1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [72] J. Wang, W. Ji, R. Yin, Z. Gong, X. Li, S. Zhang, C. Wu. Integrated polarization multiplexing IQ modulator based on lithium niobate thin film and all waveguide structure. Optik, 152, 127-135(2018).

    [73] M. Mahmoud, L. Cai, C. Bottenfield, G. Piazza. Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform. IEEE Photon. J., 10, 6600410(2018).

    [74] B. Zhang, L. Wang, F. Chen. Recent Advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photon. Rev., 14, 1900407(2020).

    [75] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [76] J. E. Toney, M. Shnider, N. Smith, P. Pontius, J. Busch, V. E. Stenger, A. Pollick, S. Sriram. Low voltage, high speed electro-optic scanner and switch in thin film lithium niobate. Proc. SPIE, 8497, 849709(2012).

    [77] V. E. Stenger, J. E. Toney, J. Scholl, J. Busch, A. Pollick, P. Pontius, S. Sriram. Wide-band electro-optic modulator in thin-film lithium niobate on quartz substrate. 38th European Conference and Exhibition on Optical Communications, 1-3(2012).

    [78] J. E. Toney, V. E. Stenger, P. Pontius, N. Smith, J. Scholl, A. Pollick, B. Sadani, H. Lu, M.-P. Bernal, S. Sriram. Photonic crystal electro-optic devices in engineered thin film lithium niobate substrates. Proc. SPIE, 8376, 83760H(2012).

    [79] K. Nassau, H. J. Levinstein, G. M. Loiacono. The domain structure and etching of ferroelectric lithium niobate. Appl. Phys. Lett., 6, 228-229(1965).

    [80] N. Niizeki, T. Yamada, H. Toyoda. Growth ridges, etched hillocks, and crystal structure of lithium niobate. Jpn. J. Appl. Phys., 6, 318-327(1967).

    [81] S. Benchabane, L. Robert, J.-Y. Rauch, A. Khelif, V. Laude. Highly selective electroplated nickel mask for lithium niobate dry etching. J. Appl. Phys., 105, 094109(2009).

    [82] H. J. Lee, S.-Y. Shin. Lithium niobate ridge waveguides fabricated by wet etching. Electron. Lett., 31, 268-269(1995).

    [83] F. Laurell, J. Webjorn, G. Arvidsson, J. Holmberg. Wet etching of proton-exchanged lithium niobate-a novel processing technique. J. Lightwave Technol., 10, 1606-1609(1992).

    [84] V. Dobrusin, S. Ruschin, L. Shpisman. Fabrication method of low-loss large single mode ridge Ti: LiNbO3 waveguides. Opt. Mater., 29, 1630-1634(2007).

    [85] H. Hu, R. Ricken, W. Sohler. Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium. Appl. Phys. B, 98, 677-679(2010).

    [86] H. Hu, R. Ricken, W. Sohler, R. B. Wehrspohn. Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photon. Technol. Lett., 19, 417-419(2007).

    [87] M. Kawabe, M. Kubota, K. Masuda, S. Namba. Microfabrication in LiNbO3 by ion-bombardment-enhanced etching. J. Vac. Sci. Technol., 15, 1096-1098(1978).

    [88] F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, W. Wesch. Ion beam enhanced etching of LiNbO3. Nucl. Instrum. Methods Phys. Res. B, 250, 164-168(2006).

    [89] R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, T. Pertsch. Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation. Opt. Lett., 40, 2715-2718(2015).

    [90] M. Minakata. Efficient LiNbO3 balanced bridge modulator/switch with an ion-etched slot. Appl. Phys. Lett., 35, 40-42(1979).

    [91] I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, E. H. Turner. Lithium niobate ridge waveguide modulator. Appl. Phys. Lett., 24, 622-624(1974).

    [92] H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, W. Sohler. Plasma etching of proton-exchanged lithium niobate. J. Vac. Sci. Technol. A, 24, 1012-1015(2006).

    [93] J. L. Jackel, R. E. Howard, E. L. Hu, S. P. Lyman. Reactive ion etching of LiNbO3. Appl. Phys. Lett., 38, 907-909(1981).

    [94] T. Masashi, S. Yoshikado. Etching characteristics of LiNbO3 crystal by fluorine gas plasma reactive ion etching. Sci. Technol. Adv. Mater., 2, 563-569(2001).

    [95] S. Matsui, T. Yamato, H. Aritome, S. Namba. Microfabrication of LiNbO3 by reactive ion-beam etching. Jpn. J. Appl. Phys., 19, L463-L465(1980).

    [96] K. Noguchi, O. Mitomi, K. Kawano, M. Yanagibashi. Highly efficient 40 GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure. IEEE Photon. Technol. Lett., 5, 52-54(1993).

    [97] W. J. Park, W. S. Yang, W. K. Kim, H. Y. Lee, J.-W. Lim, M. Isshiki, D. H. Yoon. Ridge structure etching of LiNbO3 crystal for optical waveguide applications. Opt. Mater., 28, 216-220(2006).

    [98] P. Rabiei, W. H. Steier. Lithium niobate ridge waveguides and modulators fabricated using smart guide. Appl. Phys. Lett., 86, 161115(2005).

    [99] Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, S. Yu. Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma. J. Appl. Phys., 103, 034109(2008).

    [100] R. Wolf, I. Breunig, H. Zappe, K. Buse. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express, 25, 29927-29933(2017).

    [101] M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, Y. Cheng. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).

    [102] R. Wu, J. Lin, M. Wang, Z. Fang, W. Chu, J. Zhang, J. Zhou, Y. Cheng. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish. Opt. Lett., 44, 4698-4701(2019).

    [103] R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018).

    [104] S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tünnermann, T. Pertsch. Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes. Appl. Phys. Lett., 103, 251101(2013).

    [105] S. Yin. Fabrication of high-aspect-ratio submicron-to-nanometer range microstructures in LiNbO3 for the next generation of integrated optoelectronic devices by focused ion beams (FIB). Microw. Opt. Technol. Lett., 22, 396-398(1999).

    [106] F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, M. Spajer. Nanostructuring lithium niobate substrates by focused ion beam milling. Opt. Mater., 27, 1421-1425(2005).

    [107] B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, J. Xu. Lithium niobate metasurfaces. Laser Photon. Rev., 13, 1800312(2019).

    [108] V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, L. Maleki. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043903(2004).

    [109] M. Wang, N. Yao, R. Wu, Z. Fang, S. Lv, J. Zhang, L. Qiao, J. Lin, W. Fang, Y. Cheng. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules. New J. Phys., 22, 073030(2020).

    [110] L.-K. Chen, Y.-F. Xiao. On-chip lithium niobate microresonators for photonics applications. Sci. China Phys. Mech. Astron., 63, 224231(2020).

    [111] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006-1011(2018).

    [112] R. Luo, Y. He, H. Liang, M. Li, J. Ling, Q. Lin. Optical parametric generation in a lithium niobate microring with modal phase matching. Phys. Rev. Appl., 11, 034026(2019).

    [113] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).

    [114] M. Li, H. Liang, R. Luo, Y. He, J. Ling, Q. Lin. Photon-level tuning of photonic nanocavities. Optica, 6, 860-863(2019).

    [115] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, M. Lončar. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963-6973(2017).

    [116] J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, Y.-P. Huang. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).

    [117] L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photon. Res., 7, 1003-1013(2019).

    [118] W. S. Yang, H.-Y. Lee, W. K. Kim, D. H. Yoon. Asymmetry ridge structure fabrication and reactive ion etching of LiNbO3. Opt. Mater., 27, 1642-1646(2005).

    [119] G. Ulliac, B. Guichardaz, J.-Y. Rauch, S. Queste, S. Benchabane, N. Courjal. Ultra-smooth LiNbO3 micro and nano structures for photonic applications. Microelectron. Eng., 88, 2417-2419(2011).

    [120] S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, H.-Y. Lee, W. J. Jeong, M. K. Song, D. H. Yoon. The ridge waveguide fabrication with periodically poled MgO-doped lithium niobate for green laser. Appl. Surf. Sci., 254, 1101-1104(2007).

    [121] T. Tsuchiya, K. Sugano, H. Takahashi, H. Seo, Y. Pihosh, Y. Kazoe, K. Mawatari, T. Kitamori, O. Tabata. Dry etching and low-temperature direct bonding process of lithium niobate wafer for fabricating micro/nano channel device. 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 1245-1248(2017).

    [122] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, Y.-F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 43, 2917-2920(2018).

    [123] L. Zhang, D. Zheng, W. Li, F. Bo, F. Gao, Y. Kong, G. Zhang, J. Xu. Microdisk resonators with lithium-niobate film on silicon substrate. Opt. Express, 27, 33662-33669(2019).

    [124] D. Jun. Fabrication methodologies for integrated photonic devices in lithium niobate(2013).

    [125] R. Wolf, I. Breunig, H. Zappe, K. Buse. Scattering-loss reduction of ridge waveguides by sidewall polishing. Opt. Express, 26, 19815-19820(2018).

    [126] J. Lin, J. Zhou, R. Wu, M. Wang, Z. Fang, W. Chu, J. Zhang, L. Qiao, Y. Cheng. High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator. Micromachines, 10(2019).

    [127] S. Zhu. Meter-level optical delay line on a low-loss lithium niobate nanophotonics chip. Chin. Phys. Lett., 37, 080102(2020).

    [128] R. Takigawa, E. Higurashi, T. Kawanishi, T. Asano. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method. Opt. Express, 22, 27733-27738(2014).

    [129] R. Takigawa, K. Kamimura, K. Asami, K. Nakamoto, T. Tomimatsu, T. Asano. Fabrication of a bonded LNOI waveguide structure on Si substrate using ultra-precision cutting. Jpn. J. Appl. Phys., 59, SBBD03(2020).

    [130] G. Li, Y. Chen, H. Jiang, X. Chen. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band. Opt. Lett., 42, 939-942(2017).

    [131] B. A. Fuchs, C. Syn, S. P. Velsko. Diamond turning of lithium niobate for optical applications. Appl. Opt., 31, 5788-5793(1992).

    [132] T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, T. W. Hänsch. Efficient 494  mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn: LiNbO3 ridge waveguide. Opt. Express, 17, 17792-17800(2009).

    [133] J. Sun, Y. Gan, C. Xu. Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide. Opt. Lett., 36, 549-551(2011).

    [134] T. Ding, Y. Zheng, X. Chen. Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip. Opt. Lett., 44, 1524-1527(2019).

    [135] M. F. Volk, S. Suntsov, C. E. Rüter, D. Kip. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Opt. Express, 24, 1386-1391(2016).

    [136] N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, M.-P. Bernal. Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing. Opt. Express, 23, 13983-13990(2015).

    [137] T. Ding, Y. Zheng, X. Chen. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide. J. Lightwave Technol., 37, 1296-1300(2019).

    [138] I. Hendry, L. S. Trainor, Y. Xu, S. Coen, S. G. Murdoch, H. G. L. Schwefel, M. Erkintalo. Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ(2) whispering-gallery-mode microresonator. Opt. Lett., 45, 1204-1207(2019).

    [139] R. Takigawa, E. Higurashi, T. Kawanishi, T. Asano. Demonstration of ultraprecision ductile-mode cutting for lithium niobate microring waveguides. Jpn. J. Appl. Phys., 55, 110304(2016).

    [140] N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, M.-P. Bernal. High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing. J. Phys. D, 44, 305101(2011).

    [141] J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, G. Leuchs. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett., 104, 153901(2010).

    [142] D. V. Strekalov, A. S. Kowligy, Y.-P. Huang, P. Kumar. Optical sum-frequency generation in a whispering-gallery-mode resonator. New J. Phys., 16, 053025(2014).

    [143] I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, L. Maleki. Ultra high Q crystalline microcavities. Opt. Commun., 265, 33-38(2006).

    [144] M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, C. Marquardt. A versatile source of single photons for quantum information processing. Nat. Commun., 4, 1818(2013).

    [145] I. Grudinin, V. Ilchenko, A. Matsko, A. Savchenkov, L. Maleki. Crystalline Micro-resonators: Status and Applications(2006).

    [146] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J. E. Bowers. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531-535(2016).

    [147] L. Chang, M. H. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, J. E. Bowers. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett., 42, 803-806(2017).

    [148] A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, S. Fathpour. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express, 24, 29941-29947(2016).

    [149] P. Rabiei, J. Ma, S. Khan, J. Chiles, S. Fathpour. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express, 21, 25573-25581(2013).

    [150] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).

    [151] P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, S. Mookherjea. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep., 6, 22301(2016).

    [152] L. Chen, J. Nagy, R. M. Reano. Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon. Opt. Mater. Express, 6, 2460-2467(2016).

    [153] J. Chiles, S. Fathpour. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica, 1, 350-355(2014).

    [154] A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746-22752(2015).

    [155] P. Rabiei, A. Rao, J. Chiles, J. Ma, S. Fathpour. Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates. Opt. Lett., 39, 5379-5382(2014).

    [156] Z. Yu, X. Xi, J. Ma, H. K. Tsang, C.-L. Zou, X. Sun. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2020).

    [157] C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, G. C. Guo. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [158] J. E. Toney. Lithium Niobate Photonics(2015).

    [159] H. Hu, R. Ricken, W. Sohler. Lithium niobate photonic wires. Opt. Express, 17, 24261-24268(2009).

    [160] Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, X. Gao, F. Bo, F. Gao, G. Zhang, J. Xu. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci. China Phys. Mech. Astron., 61, 114211(2018).

    [161] M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, B. Dahmani. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon. J. Opt., 18, 085503(2016).

    [162] H. Hu, L. Gui, R. Ricken, W. Sohler. Towards nonlinear photonic wires in lithium niobate. Proc. SPIE, 7604, 76040R(2010).

    [163] P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, A. Zrenner. Periodic domain inversion in x-cut single-crystal lithium niobate thin film. Appl. Phys. Lett., 108, 152902(2016).

    [164] R. V. Gainutdinov, T. R. Volk, H. H. Zhang. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates. Appl. Phys. Lett., 107, 162903(2015).

    [165] G.-H. Shao, Y.-H. Bai, G.-X. Cui, C. Li, X.-B. Qiu, D.-Q. Geng, D. Wu, Y.-Q. Lu. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Adv., 6, 075011(2016).

    [166] Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo, G. Zhang, J. Xu. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photon. Res., 8, 311(2020).

    [167] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [168] X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, Y. Sheng. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett., 107, 141102(2015).

    [169] D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, Y. N. Wang. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl. Phys. Lett., 37, 607-609(1980).

    [170] L. Zhang, Z. Hao, W. Mao, A. Gao, F. Bo, F. Gao, G. Zhang, J. Xu. Biperiodically poled lithium niobate microcavities for multiple nonlinear optical processes. Conference on Lasers and Electro-Optics (CLEO), JTh2E.17.(2020).

    [171] J.-Y. Chen, Y. M. Sua, Z.-H. Ma, C. Tang, Z. Li, Y.-P. Huang. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Contin., 2, 2914-2924(2019).

    [172] J. Zhao, C. Ma, M. Rusing, S. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [173] J. Zhao, M. Rusing, S. Mookherjea. Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides. Opt. Express, 27, 12025-12038(2019).

    [174] M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, M. M. Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40-46(2020).

    [175] J. T. Nagy, K. Prabhakar, R. M. Reano. In situ temporal periodic poling of lithium niobate thin films. Conference on Lasers and Electro-Optics (CLEO), SW3F.3(2020).

    [176] J. Zhao, M. Ruesing, M. Roeper, L. M. Eng, S. Mookherjea. Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J. Appl. Phys., 127, 193104(2020).

    [177] G. Ulliac, V. Calero, A. Ndao, F. Baida, M.-P. Bernal. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt. Mater., 53, 1-5(2016).

    [178] S. Y. Siew, E. J. H. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, A. J. Danner. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening. Opt. Express, 26, 4421-4430(2018).

    [179] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Lončar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [180] I. Krasnokutska, J.-L. J. Tambasco, X. Li, A. Peruzzo. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express, 26, 897-904(2018).

    [181] B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, M. Lončar. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380-384(2019).

    [182] J. Lin, J. Zhou, R. Gao, M. Wang, R. Wu, Z. Fang, J. Zhang, Y. Cheng. High-precision measurement of a propagation loss of low-loss single-mode optical waveguides on lithium niobate on insulator. Proc. SPIE, 11266, 1126607(2020).

    [183] S. Li, L. Cai, Y. Wang, Y. Jiang, H. Hu. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe. Opt. Express, 23, 24212-24219(2015).

    [184] R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, H. Zappe. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872-875(2018).

    [185] Y. He, H. Liang, R. Luo, M. Li, Q. Lin. Dispersion engineered high quality lithium niobate microring resonators. Opt. Express, 26, 16315-16322(2018).

    [186] A. Pan, C. Hu, C. Zeng, J. Xia. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express, 27, 35659-35669(2019).

    [187] L. Ge, H. Jiang, B. Zhu, C. Lu, Y. Chen, X. Chen. Quality improvement and mode evolution of high-Q lithium niobate micro-disk induced by ‘light annealing’. Opt. Mater. Express, 9, 1632-1639(2019).

    [188] H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, Q. Lin. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett., 113, 021104(2018).

    [189] I. Krasnokutska, J.-L. J. Tambasco, A. Peruzzo. Tunable large free spectral range microring resonators in lithium niobate on insulator. Sci. Rep., 9, 11086(2019).

    [190] M. Churaev, S. Hönl, R. N. Wang, C. Möhl, T. Liu, J. C. Skehan, J. Riemensberger, D. Caimi, J. Liu, P. Seidler, T. J. Kippenberg. Hybrid Si3N4-LiNbO3 integrated platform for electro-optic conversion. Conference on Lasers and Electro-Optics (CLEO), STh1F.3(2020).

    [191] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. J. Fritz, G. J. McBrien, D. E. Bossi. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum. Electron., 6, 69-82(2000).

    [192] K. Luke, P. Kharel, C. Reimer, L. He, M. Loncar, M. Zhang. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [193] J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, A. H. Safavi-Naeini. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci. Rep., 7, 46313(2017).

    [194] A. N. R. Ahmed, S. Shi, M. Zablocki, P. Yao, D. W. Prather. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett., 44, 618-621(2019).

    [195] A. N. R. Ahmed, S. Nelan, S. Shi, P. Yao, A. Mercante, D. W. Prather. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett., 45, 1112-1115(2020).

    [196] Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, W. H. Steier. Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices. Opt. Lett., 36, 1119-1121(2011).

    [197] M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, Q. Lin. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).

    [198] M. Bazzan, C. Sada. Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev., 2, 040603(2015).

    [199] M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, Y. Cheng. On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Opt. Express, 25, 124-129(2017).

    [200] J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, M. Loncar. Toward efficient microwave-optical transduction using cavity electro-optics in thin-film lithium niobate. Conference on Lasers and Electro-Optics (CLEO), FTh4D.5(2020).

    [201] Y. Yang, M. Bahadori, A. E. Hassanien, L. L. Goddard, S. Gong. An isotropic lithium niobate microring resonator with a 1.38-nm wide continuous tuning range using 80  V. Conference on Lasers and Electro-Optics (CLEO), JTh2F.27(2020).

    [202] T.-J. Wang, G.-L. Peng, M.-Y. Chan, C.-H. Chen. On-chip optical microresonators with high electro-optic tuning efficiency. J. Lightwave Technol., 38, 1851-1857(2019).

    [203] M. Bahadori, L. L. Goddard, S. Gong. Fundamental electro-optic limitations of thin-film lithium niobate microring modulators. Opt. Express, 28, 13731-13749(2020).

    [204] M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, G. Ribeill, M. Soltani, M. Loncar. Microwave-to-optical converter based on integrated lithium niobite coupled-resonators. Conference on Lasers and Electro-Optics (CLEO), SM1I.7(2018).

    [205] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. 100-GHz low voltage integrated lithium niobate modulators. Conference on Lasers and Electro-Optics (CLEO), SM3B.4(2018).

    [206] L. Chen, M. G. Wood, R. M. Reano. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes. Opt. Express, 21, 27003-27010(2013).

    [207] P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck. Hybrid silicon photonic-lithium niobate electro-optic Mach–Zehnder modulator beyond 100 GHz(2018).

    [208] S. Jin, L. Xu, H. Zhang, Y. Li. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photon. Technol. Lett., 28, 736-739(2015).

    [209] A. S. Alam, M. Girardi, A. Caut, A. Larsson, V. Torres-Company, M. Galili, Y. Ding, K. Yvind. LiNbO3/Si3N4-bilayer vertical coupler for integrated photonics. Conference on Lasers and Electro-Optics (CLEO), STu4J.7(2020).

    [210] S. Sun, M. He, S. Yu, X. Cai. Hybrid silicon and lithium niobate Mach-Zehnder modulators with high bandwidth operating at C-band and O-band. Conference on Lasers and Electro-Optics (CLEO), STh1F.4(2020).

    [211] A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, D. W. Prather. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express, 24, 15590-15595(2016).

    [212] D. A. B. Miller. Perfect optics with imperfect components. Optica, 2, 747-750(2015).

    [213] X. Li, M. Wang, J. Li, K. Chen. Monolithic 1×4 reconfigurable electro-optic tunable interleaver in lithium niobate thin film. IEEE Photon. Technol. Lett., 31, 1611-1614(2019).

    [214] J. Jian, M. Xu, L. Liu, Y. Luo, J. Zhang, L. Liu, L. Zhou, H. Chen, S. Yu, X. Cai. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt. Express, 27, 18731-18739(2019).

    [215] L. Shao, W. Mao, S. Maity, N. Sinclair, Y. Hu, L. Yang, M. Lončar. Nonreciprocal acoustic transmission using lithium niobate parity-time-symmetric resonators. Conference on Lasers and Electro-Optics (CLEO), FTh4Q.2(2020).

    [216] L. Shao, N. Sinclair, J. Leatham, Y. Hu, M. Yu, T. Turpin, D. Crowe, M. Loncar. Integrated lithium niobate acousto-optic frequency shifter. Conference on Lasers and Electro-Optics (CLEO), STh1F.5(2020).

    [217] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, M. Loncar. Integrated lithium niobate acousto-optic cavities for microwave-to-optical conversion. Conference on Lasers and Electro-Optics (CLEO), FM2R.1(2020).

    [218] Z. Yu, X. Sun. Acousto-optic modulation of photonic bound state in the continuum. Conference on Lasers and Electro-Optics (CLEO), STh1F.6(2020).

    [219] C. J. Sarabalis, T. P. McKenna, R. N. Patel, A. H. Safavi-Naeini. Acousto-optics in lithium niobate-on-sapphire. Conference on Lasers and Electro-Optics (CLEO), FTh3C.5(2020).

    [220] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 9, 828-890(2017).

    [221] Y. Li, X. Jiang, G. Zhao, L. Yang. Whispering gallery mode microresonator for nonlinear optics(2018).

    [222] I. Breunig. Three-wave mixing in whispering gallery resonators. Laser Photon. Rev., 10, 569-587(2016).

    [223] G. Lin, Y. K. Chembo. Monolithic total internal reflection resonators for applications in photonics. Opt. Mater. X, 2, 100017(2019).

    [224] M. Santandrea, M. Stefszky, C. Silberhorn. General framework for the analysis of imperfections in nonlinear systems. Opt. Lett., 44, 5398-5401(2019).

    [225] J. Moore, J. K. Douglas, I. W. Frank, T. A. Friedmann, R. M. Camacho, M. Eichenfield. Efficient second harmonic generation in lithium niobate on insulator. Conference on Lasers and Electro-Optics (CLEO), STh3P.1(2016).

    [226] L. Wang, L.-Q. Li, X.-T. Zhang, F. Chen. Type I phase matching in thin film of lithium niobate on insulator. Results Phys., 16, 103011(2020).

    [227] L. Cai, A. V. Gorbach, Y. Wang, H. Hu, W. Ding. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides. Sci. Rep., 8, 12478(2018).

    [228] P. Main, P. J. Mosley, W. Ding, L. Zhang, A. V. Gorbach. Hybrid microfiber-lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources. Phys. Rev. A, 94, 063844(2016).

    [229] J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, Y. Cheng. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl., 6, 014002(2016).

    [230] H. Hu, D. Büchter, R. Ricken, W. Sohler. Periodically poled LNOI photonic wires. 15th European Conference on Integrated Optics (ECIO 10), FrPD3(2010).

    [231] L. Gui. Periodically poled ridge waveguides and photonic wires in LiNbO3 for efficient nonlinear interactions(2010).

    [232] L. Gui, H. Hu, M. Garcia-Granda, W. Sohler. Local periodic poling of ridges and ridge waveguides on X- and Y-cut LiNbO3 and its application for second harmonic generation. Opt. Express, 17, 3923-3928(2009).

    [233] A. Rao, K. Abdelsalam, T. Sjaardema, A. Honardoost, G. F. Camacho-Gonzalez, S. Fathpour. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600% W–1 cm–2. Opt. Express, 27, 25920-25930(2019).

    [234] J.-Y. Chen, Y. M. Sua, Z. Ma, L. Nguyen, Y.-P. Huang. Phase-sensitive amplification in nanophotonic periodically poled lithium niobate waveguides. Conference on Lasers and Electro-Optics (CLEO), SM3L.5(2020).

    [235] V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, L. Maleki. Low-threshold parametric nonlinear optics with quasi-phase-matched whispering-gallery modes. J. Opt. Soc. Am. B, 20, 1304-1308(2003).

    [236] L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo, G. Zhang, J. Xu. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett., 45, 3353-3356(2020).

    [237] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [238] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [239] M. Yu, C. Wang, M. Zhang, M. Loncar. Chip-based lithium-niobate frequency combs. IEEE Photon. Technol. Lett., 31, 1894-1897(2019).

    [240] E. Tsao, S.-W. Huang. Monostable single dissipative Kerr soliton generation in a periodically poled lithium niobate microresonator. Conference on Lasers and Electro-Optics (CLEO), JTu2F.27(2020).

    [241] H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, Q. Lin. Fast response of photorefraction in lithium niobate microresonator. Opt. Lett., 42, 3267-3270(2017).

    [242] W. Johnston, I. Kaminow, J. Bergman. Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials. Appl. Phys. Lett., 13, 190-193(1968).

    [243] R. F. Schaufele, M. J. Weber. Raman scattering by lithium niobate. Phys. Rev., 152, 705(1966).

    [244] A. B. Barker, R. Loudon. Dielectric properties and optical phonons in LiNbO3. Phys. Rev., 158, 433(1967).

    [245] S. Spillane, T. Kippenberg, K. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [246] G. Lin, Y. K. Chembo. Phase-locking transition in Raman combs generated with whispering gallery mode resonators. Opt. Lett., 41, 3718-3721(2016).

    [247] T. Hansson, D. Modotto, S. Wabnitz. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett., 39, 6747-6750(2014).

    [248] L. Maleki, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko. Whispering gallery mode lithium niobate microresonators for photonics applications. Proc. SPIE, 5104, 1-13(2003).

    [249] M. Leidinger, B. Sturman, K. Buse, I. J. O. l. Breunig. Strong forward-backward asymmetry of stimulated Raman scattering in lithium-niobate-based whispering gallery resonators. Opt. Lett., 41, 2823-2826(2016).

    [250] Z. Fang, H. Luo, J. Lin, M. Wang, J. Zhang, R. Wu, J. Zhou, W. Chu, T. Lu, Y. Cheng. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. Opt. Lett., 44, 5953-5956(2019).

    [251] M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L. Gaeta, M. Lončar. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci. Appl., 9, e9(2020).

    [252] S. Mosca, M. Parisi, I. Ricciardi, F. Leo, T. Hansson, M. Erkintalo, P. Maddaloni, P. D. Natale, S. Wabnitz, M. D. Rosa. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator. Phys. Rev. Lett., 121, 093903(2018).

    [253] A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, H. G. L. Schwefel. Resonant electro-optic frequency comb. Nature, 568, 378-381(2019).

    [254] C. Reimer, Y. Hu, A. Shams-Ansari, M. Zhang, M. Lončar. High-dimensional frequency crystals and quantum walks in electro-optic microcombs(2019).

    [255] T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, M. Lončar. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photon. Technol. Lett., 31, 889-892(2019).

    [256] M. Xu, M. He, X. Liu, Y. Pan, S. Yu, X. Cai. Integrated lithium niobate modulator and frequency comb generator based on Fabry-Perot resonators. Conference on Lasers and Electro-Optics (CLEO), JTh2B.27(2020).

    [257] B.-X. Xiang, L. Wang, Y.-J. Ma, L. Yu, H.-P. Han, S.-C. Ruan. Supercontinuum generation in lithium niobate ridge waveguides fabricated by proton exchange and ion beam enhanced etching. Chin. Phys. Lett., 34, 024203(2017).

    [258] M. Yu, B. Desiatov, Y. Okawachi, A. L. Gaeta, M. Lončar. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett., 44, 1222-1225(2019).

    [259] Y. Okawachi, M. Yu, B. Desiatov, B. Y. Kim, T. Hansson, M. Lončar, A. L. Gaeta. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702-707(2020).

    [260] R. J. O’Brien, G. J. Rosasco, A. Weber. Brillouin scattering in lithium niobate. Light Scattering Spectra of Solids, 623-630(1969).

    [261] S. Wang, L. Yang, R. Cheng, Y. Xu, M. Shen, R. L. Cone, C. W. Thiel, H. X. Tang. Incorporation of erbium ions into thin-film lithium niobate integrated photonics(2019).

    [262] S. Dutta, E. A. Goldschmidt, S. Barik, U. Saha, E. Waks. An integrated photonic platform for rare-earth ions in thin film lithium niobate. Nano Lett., 20, 741-747(2019).

    [263] C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo. Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron., 6, 101-113(2000).

    [264] W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, R. Ricken. Erbium-doped lithium niobate waveguide lasers. IEICE Trans. Electron., E88-C, 990-997(2005).

    [265] Y. Sun, C. W. Thiel, R. L. Cone. Optical decoherence and energy level structure of 0.1% Tm3+:LiNbO3. Phys. Rev. B, 85, 165106(2012).

    [266] X. Jiang, D. Pak, A. Nandi, Y. Xuan, M. Hosseini. Rare earth-implanted lithium niobate: properties and on-chip integration. Appl. Phys. Lett., 115, 071104(2019).

    [267] C. W. Thiel, T. Böttger, R. L. Cone. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin., 131, 353-361(2011).

    [268] M. Hempstead, J. S. Wilkinson, L. Reekie. Waveguide lasers operating at 1084 nm in neodymium-diffused lithium niobate. IEEE Photon. Technol. Lett., 4, 852-855(1992).

    [269] C. E. Rüter, S. Suntsov, D. Kip, G. Stone, V. Dierolf, H. Hu, W. Sohler. Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates. Proc. SPIE, 8982, 89821G(2014).

    [270] D. Brüske, S. Suntsov, C. E. Rüter, D. Kip. Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion. Opt. Express, 25, 29374-29379(2017).

    [271] M. George, R. Ricken, V. Quiring, W. Sohler. In-band pumped Ti:Tm:LiNbO3 waveguide amplifier and low threshold laser. Laser Photon. Rev., 7, 122-131(2013).

    [272] Y. Pan, S. Sun, M. Xu, M. He, S. Yu, X. Cai. Low fiber-to-fiber loss, large bandwidth and low drive voltage lithium niobate on insulator modulators. Conference on Lasers and Electro-Optics (CLEO), JTh2B.10(2020).

    [273] L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, L. Marko. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett., 44, 2314-2317(2019).

    [274] N. Yao, J. Zhou, R. Gao, J. Lin, M. Wang, Y. Cheng, W. Fang, L. Tong. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Opt. Express, 28, 12416-12423(2020).

    [275] Z. Chen, Y. Wang, Y. Jiang, R. Kong, H. Hu. Grating coupler on single-crystal lithium niobate thin film. Opt. Mater., 72, 136-139(2017).

    [276] I. Krasnokutska, R. J. Chapman, J.-L. J. Tambasco, A. Peruzzo. High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express, 27, 17681-17685(2019).

    [277] I. Krasnokutska, J.-L. J. Tambasco, A. Peruzzo. Nanostructuring of LNOI for efficient edge coupling. Opt. Express, 27, 16578-16585(2019).

    [278] G. Son, S. Han, J. Park, K. Kwon, K. Yu. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits. Nanophotonics, 7, 1845-1864(2018).

    [279] S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter. Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Appl. Phys. Lett., 103, 181104(2013).

    [280] T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletic, M. D. Lukin. Efficient fiber-optical interface for nanophotonic device. Optica, 2, 70-75(2015).

    [281] H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun., 3, 867(2012).

    [282] J. Li, R. Yin, W. Ji, Q. Huang, Z. Gong, L. Lv, X. Zhou. AWG optical filter with tunable central wavelength and bandwidth based on LNOI and electro-optic effect. Opt. Commun., 454, 124445(2020).

    [283] K. Liu, J. Shi, X. Chen. Linear polarization-state generator with high precision in periodically poled lithium niobate. Appl. Phys. Lett., 94, 101106(2009).

    [284] Y.-Q. Lu, Z.-L. Wan, Q. Wang, Y.-X. Xi, N.-B. Ming. Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Appl. Phys. Lett., 77, 3719-3721(2000).

    [285] W. Yu, S. Dai, Q. Zhao, J. Li, J. Liu. Wideband and compact TM-pass polarizer based on hybrid plasmonic grating in LNOI. Opt. Express, 27, 34857-34863(2019).

    [286] H. Xu, D. Dai, L. Liu, Y. Shi. Proposal for an ultra-broadband polarization beam splitter using an anisotropy-engineered Mach-Zehnder interferometer on the x-cut lithium-niobate-on-insulator. Opt. Express, 28, 10899-10908(2020).

    [287] D. Pohl, F. Kaufmann, M. R. Escalé, J. Holzer, R. Grange. Tunable Bragg grating filters and resonators in lithium niobate-on-insulator waveguides. Conference on Lasers and Electro-Optics (CLEO), STu4J.5(2020).

    [288] A. A. Sayem, R. Cheng, S. Wang, H. X. Tang. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors. Appl. Phys. Lett., 116, 151102(2020).

    [289] B. Desiatov, M. Lončar. Silicon photodetector for integrated lithium niobate photonics. Appl. Phys. Lett., 115, 121108(2019).

    [290] M. Colangelo, B. Desiatov, D. Zhu, J. Holzgrafe, O. Medeiros, M. Lončar, K. K. Berggren. Superconducting nanowire single-photon detector on thin-film lithium niobate photonic waveguide. Conference on Lasers and Electro-Optics (CLEO), SM4O.4(2020).

    [291] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2020).

    [292] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [293] Z. Ying, C. Feng, Z. Zhao, S. Dhar, H. Dalir, J. Gu, Y. Cheng, R. Soref, D. Z. Pan, R. T. Chen. Electronic-photonic arithmetic logic unit for high-speed computing. Nat. Commun., 11, 2154(2020).

    [294] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    CLP Journals

    [1] Renhong Gao, Ni Yao, Jianglin Guan, Li Deng, Jintian Lin, Min Wang, Lingling Qiao, Wei Fang, Ya Cheng, "Lithium niobate microring with ultra-high Q factor above 108," Chin. Opt. Lett. 20, 011902 (2022)

    [2] Xuerui Sun, Yinan Wu, Chuanyi Lu, Yuting Zhang, Hao Li, Shijie Liu, Yuanlin Zheng, Xianfeng Chen, "Experimental investigation on the unbalanced Mach–Zehnder interferometer on lithium niobate thin film," Chin. Opt. Lett. 20, 101301 (2022)

    [3] Xiao-Hui Tian, Wei Zhou, Kun-Qian Ren, Chi Zhang, Xiaoyue Liu, Guang-Tai Xue, Jia-Chen Duan, Xinlun Cai, Xiaopeng Hu, Yan-Xiao Gong, Zhenda Xie, Shi-Ning Zhu, "Effect of dimension variation for second-harmonic generation in lithium niobate on insulator waveguide [Invited]," Chin. Opt. Lett. 19, 060015 (2021)

    [4] Zhenzhong Hao, Li Zhang, Jie Wang, Fang Bo, Feng Gao, Guoquan Zhang, Jingjun Xu, "Sum-frequency generation of a laser and its background in an on-chip lithium-niobate microdisk," Chin. Opt. Lett. 20, 111902 (2022)

    [5] Yuechen Jia, Yingying Ren, Xingjuan Zhao, Feng Chen, "Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited]," Chin. Opt. Lett. 19, 060013 (2021)

    [6] Zhaoxi Chen, Jingwei Yang, Wing-Han Wong, Edwin Yue-Bun Pun, Cheng Wang, "Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform," Photonics Res. 9, 2319 (2021)

    [7] Ke Zhang, Zhaoxi Chen, Hanke Feng, Wing-Han Wong, Edwin Yue-Bun Pun, Cheng Wang, "High-Q lithium niobate microring resonators using lift-off metallic masks [Invited]," Chin. Opt. Lett. 19, 060010 (2021)

    [8] Qiang Luo, Chen Yang, Zhenzhong Hao, Ru Zhang, Dahuai Zheng, Fang Bo, Yongfa Kong, Guoquan Zhang, Jingjun Xu, "On-chip erbium-doped lithium niobate waveguide amplifiers [Invited]," Chin. Opt. Lett. 19, 060008 (2021)

    [9] Yang Li, Zhijin Huang, Wentao Qiu, Jiangli Dong, Heyuan Guan, Huihui Lu, "Recent progress of second harmonic generation based on thin film lithium niobate [Invited]," Chin. Opt. Lett. 19, 060012 (2021)

    [10] Yiran Zhu, Yuan Zhou, Zhe Wang, Zhiwei Fang, Zhaoxiang Liu, Wei Chen, Min Wang, Haisu Zhang, Ya Cheng, "Electro-optically tunable microdisk laser on Er3+-doped lithium niobate thin film," Chin. Opt. Lett. 20, 011303 (2022)

    [11] Shuai Wan, Rui Niu, Jin-Lan Peng, Jin Li, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong, "Fabrication of the high-Q Si3N4 microresonators for soliton microcombs," Chin. Opt. Lett. 20, 032201 (2022)

    [12] Biao Mu, Xianfang Wu, Yunfei Niu, Yan Chen, Xinlun Cai, Yanxiao Gong, Zhenda Xie, Xiaopeng Hu, Shining Zhu, "Locally periodically poled LNOI ridge waveguide for second harmonic generation [Invited]," Chin. Opt. Lett. 19, 060007 (2021)

    [13] Lingqi Li, Weijin Kong, Feng Chen, "Femtosecond laser-inscribed optical waveguides in dielectric crystals: a concise review and recent advances," Adv. Photon. 4, 024002 (2022)

    Jintian Lin, Fang Bo, Ya Cheng, Jingjun Xu, "Advances in on-chip photonic devices based on lithium niobate on insulator," Photonics Res. 8, 1910 (2020)
    Download Citation