• Optoelectronic Technology
  • Vol. 41, Issue 4, 295 (2021)
Zhongrui WANG1, Shaohua ZHU2, Yang CHEN3, Houqing LU3..., Yangyang SUN1, Hongbo HAN2 and Zhigang ZHANG2|Show fewer author(s)
Author Affiliations
  • 1National Defense Engineering College, Army University of Engineering, Nanjing 20007, CHN
  • 2The Fourth Geological Brigade of Jiangsu Bureau of Geology and Mineral Resources,Suzhou Jiangsu 1519, CHN
  • 3Field Engineering College, Army University of Engineering, Nanjing 210007, CHN
  • show less
    DOI: 10.19453/j.cnki.1005-488x.2021.04.009 Cite this Article
    Zhongrui WANG, Shaohua ZHU, Yang CHEN, Houqing LU, Yangyang SUN, Hongbo HAN, Zhigang ZHANG. Application of OFDR Distributed Optical Fiber Sensing in Horizontal Displacement Measurement of Deep Soil[J]. Optoelectronic Technology, 2021, 41(4): 295 Copy Citation Text show less
    Schematic of inclinometer tube
    Fig. 1. Schematic of inclinometer tube
    Force analysis of bending deformation of inclinometer tube
    Fig. 2. Force analysis of bending deformation of inclinometer tube
    Calculation diagram of inclinometer tube
    Fig. 3. Calculation diagram of inclinometer tube
    Optical fiber layout on the inclinometer tube
    Fig. 4. Optical fiber layout on the inclinometer tube
    Photo of displacement measurement experiment site
    Fig. 5. Photo of displacement measurement experiment site
    Schematic of the boundary conditions of the displacement measurement experiment
    Fig. 6. Schematic of the boundary conditions of the displacement measurement experiment
    Comparison of displacement measured by optical fiber and dial gauge displacement
    Fig. 7. Comparison of displacement measured by optical fiber and dial gauge displacement
    The location of the test foundation pit and its surrounding environment
    Fig. 8. The location of the test foundation pit and its surrounding environment
    Steel strand strain optical cable
    Fig. 9. Steel strand strain optical cable
    Fiber-optic inclinometer sensors arranged in the ground connecting wall steel cage and the soil
    Fig. 10. Fiber-optic inclinometer sensors arranged in the ground connecting wall steel cage and the soil
    Fiber optic inclinometer point after installation
    Fig. 11. Fiber optic inclinometer point after installation
    Photo of foundation pit excavation site
    Fig. 12. Photo of foundation pit excavation site
    Denoising results of DBSCAN algorithm
    Fig. 13. Denoising results of DBSCAN algorithm
    Comparison of initial strain and displacement of CX2 measuring point on October 13
    Fig. 14. Comparison of initial strain and displacement of CX2 measuring point on October 13
    Comparison of initial strain displacement of TX4 measuring point on October 15
    Fig. 15. Comparison of initial strain displacement of TX4 measuring point on October 15
    Comparison of fiber displacement of CX2 measuring point and displacement of inclinometer and displacement error
    Fig. 16. Comparison of fiber displacement of CX2 measuring point and displacement of inclinometer and displacement error
    Comparison of fiber displacement of TX4 measuring point and displacement of inclinometer and displacement error
    Fig. 17. Comparison of fiber displacement of TX4 measuring point and displacement of inclinometer and displacement error
    方法测量精度特点成本
    GPS厘米级适合大范围监测且只能监测地表变形1万元左右
    测量机器人毫米级只能进行表面变形观测30~40万元
    固定式测斜仪毫米级自动化监测,不易安装,不可回收,不能实现位移连续测量和多方向位移测量较高
    遥感和无人机监测毫米级适用于大范围的整体监测较高
    Table 1. Comparison of automatic monitoring methods of horizontal displacement
    Zhongrui WANG, Shaohua ZHU, Yang CHEN, Houqing LU, Yangyang SUN, Hongbo HAN, Zhigang ZHANG. Application of OFDR Distributed Optical Fiber Sensing in Horizontal Displacement Measurement of Deep Soil[J]. Optoelectronic Technology, 2021, 41(4): 295
    Download Citation