• Study On Optical Communications
  • Vol. 49, Issue 1, 17 (2023)
Te KE, Ying ZHU*, Chu-yu PENG, Xiao HU, and Xi XIAO
Author Affiliations
  • State Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan 430074, China
  • show less
    DOI: 10.13756/j.gtxyj.2023.01.002 Cite this Article
    Te KE, Ying ZHU, Chu-yu PENG, Xiao HU, Xi XIAO. Research History and Prospect of Photonic Spiking Neural Networks[J]. Study On Optical Communications, 2023, 49(1): 17 Copy Citation Text show less
    References

    [1] Haykin S[M]. Neural Networks and Learning Machines(2009).

    [2] Engel A K, König P, Kreiter A K et al. Temporal Coding in the Visual Cortex: New Vistas on Integration in the Nervous System[J]. Trends in Neurosciences, 15, 218-226(1992).

    [3] McANALLY K E N I, Stein J F. Auditory Temporal Coding in Dyslexia[J]. Proceedings of the Royal Society of London (Series B: Biological Sciences), 263, 961-965(1996).

    [4] Lestienne R. Spike Timing, Synchronization and Information Processing on the Sensory Side of the Central Nervous System[J]. Progress in Neurobiology, 65, 545-591(2001).

    [5] Hodgkin A L, Huxley A F. Currents Carried by Sodium and Potassium Ions through the Membrane of the Giant Axon of Loligo[J]. The Journal of Physiology, 116, 449-472(1952).

    [6] Hodgkin A L, Huxley A F. A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve[J]. Bulletin of Mathematical Biology, 52, 25-71(1990).

    [7] Morris C, Lecar H. Voltage Oscillations in the Barnacle Giant Muscle Fiber[J]. Biophysical Journal, 35, 193-213(1981).

    [8] FitzHugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane[J]. Biophysical Journal, 1, 445-466(1961).

    [9] Nagumo J, Arimoto S, Yoshizawa S. An Active Pulse Transmission Line Simulating Nerve Axon[J]. Proceedings of the IRE, 50, 2061-2070(1962).

    [10] Hindmarsh J L, Rose R M. The Assembly of Ionic Currents in a Thalamic Neuron Ⅰ. the Three-Dimensional Model[J]. Proceedings of the Royal Society of London (B: Biological Sciences), 237, 267-288(1989).

    [11] Hindmarsh J L, Rose R M. The Assembly of Ionic Currents in a Thalamic Neuron Ⅱ. the Three-Dimensional Model[J]. Proceedings of the Royal Society of London (B: Biological Sciences), 237, 289-312(1989).

    [12] Hindmarsh J L, Rose R M. The Assembly of Ionic Currents in a Thalamic Neuron Ⅲ. the Three-Dimensional Model[J]. Proceedings of the Royal Society of London (B: Biological Sciences), 237, 313-334(1989).

    [13] Izhikevich E M. Simple Model of Spiking Neurons[J]. IEEE Transactions on Neural Networks, 14, 1569-1572(2003).

    [14] Lapique L. Recherches Quantitatives Sur L'excitation Electrique Des Nerfs Traitee Comme Une Polarization[J]. Journal of Physiology and Pathololgy, 9, 620-635(1907).

    [15] Izhikevich E M. Resonance and Selective Communication via Bursts in Neurons Having Subthreshold Oscillations[J]. Biosystems, 67, 95-102(2002).

    [16] Izhikevich E M. Resonate-and-Fire Neurons[J]. Neural Networks, 14, 883-894(2001).

    [17] Maass, Wolfgang, Bishop Christopher M. et al[M]. Pulsed Neural Networks(2001).

    [18] Masquelier, Timothée, Guyonneau R. Competitive STDP-based Spike Pattern Learning[J]. Neural Computation, 21, 1259-1268(2009).

    [19] Peter U, Diehl, Latthew C et al. Unsupervised Learning of Digit Recognition Using Spike-Timing-Dependent Plasticity[J]. Frontiers in Computational Neuroscience, 9, 99-103(2015).

    [20] Ferré Paul, Franck M, Thorpe S J. Unsupervised Feature Learning with Winner-Takes-All based STDP[J]. Frontiers in Computational Neuroscience, 12, 24-32(2018).

    [21] Bi G Q, Poo M M. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type[J]. Journal of Neuroscience, 18, 10464-10472(2012).

    [22] Bi G Q, Poo M M. Synaptic Modification by Correlated Activity: Hebb's Postulate Revisited[J]. Annual Review of Neuroscience, 24, 139-166(2001).

    [23] Morrison A, Diesmann M, Gerstner W. Phenomenological Models of Synaptic Plasticity based on Spike Timing[J]. Biological Cybernetics, 98, 459-478(2008).

    [24] Masquelier, Timothée, Thorpe et al. Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity[J]. PLoS Computational Biology, 3, 31-38(2007).

    [25] Bohte S M, Kok J N, La Poutré Han. Error-backpropagation in Temporally Encoded Networks of Spiking Neurons[J]. Neurocomputing, 48, 17-37(2000).

    [26] Gütig R, Sompolinsky H. The Tempotron: A Neuron that Learns Spike Timing–based Decisions[J]. Nature Neuroscience, 9, 420-428(2006).

    [27] Ponulak F, Kasiński A. Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting[J]. Neural Computation, 22, 467-510(2010).

    [28] Wade J J, McDaid L J, Santos J A et al. SWAT: A Spiking Neural Network Training Algorithm for Classification Problems[J]. IEEE Transactions on Neural Networks, 21, 1817-1830(2010).

    [29] Florian R V. The Chronotron: A Neuron that Learns to Fire Temporally Precise Spike Patterns[J]. Plos one, 7, e40233(2012).

    [30] Mohemmed A, Schliebs S, Matsuda S et al. Span: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns[J]. International Journal of Neural Systems, 22, 1250012(2012).

    [31] Yu Q, Tang H, Tan K C et al. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns[J]. Plos one, 8, e78318(2013).

    [32] Taherkhani A, Belatreche A, Li Y et al. A Supervised Learning Algorithm for Learning Precise Timing of Multiple Spikes in Multilayer Spiking Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 29, 5394-5407(2018).

    [33] Cordone L, Miramond B, Thierion P. Object Detection with Spiking Neural Networks on Automotive Event Data[C](2022).

    [34] Eshraghian J K, Ward M, Neftci E et al. Training Spiking Neural Networks Using Lessons from Deep Learning[J]. arXiv Preprint arXiv: 2109.12894(2021).

    [35] Furber S B, Lester D R, Plana L A et al. Overview of the SpiNNaker System Architecture[J]. IEEE Transactions on Computers, 62, 2454-2467(2012).

    [36] Schemmel J, Brüderle D, Grübl A et al. A Wafer-Scale Neuromorphic Hardware System for Large-Scale Neural Modeling[C], 1947-1950(2010).

    [37] Benjamin B V, Gao P, McQuinn E et al. Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations[J]. Proceedings of the IEEE, 102, 699-716(2014).

    [38] Akopyan F, Sawada J, Cassidy A et al. Truenorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34, 1537-1557(2015).

    [39] Davies M, Srinivasa N, Lin T H et al. Loihi: A Neuromorphic Manycore Processor with on-Chip Learning[J]. IEEE Micro, 38, 82-99(2018).

    [40] Ma D, Shen J C, Gu Z H et al. Darwin: A Neuromorphic Hardware Co-Processor based on Spiking Neural Networks[J]. Journal of Systems Architecture, 77, 43-51(2017).

    [41] Pei J, Deng L, Song S et al. Towards Artificial General Intelligence with Hybrid Tianjic Chip Architecture[J]. Nature, 572, 106-111(2019).

    [42] Xiang S Y, Song Z W, Gao S et al. Research Progress and Prospect of Optical Neuromorphic Computing(Special Invitation)[J]. Photonics Journal, 50, 1020001(2021).

    [43] Rosenbluth D, Kravtsov K, Fok M P et al. A High Performance Photonic Pulse Processing Device[J]. Optics Express, 17, 22767-22772(2009).

    [44] Kravtsov K, Fok M P, Rosenbluth D et al. Ultrafast All-optical Implementation of a Leaky Integrate-and-Fire Neuron[J]. Optics Express, 19, 2133-2147(2011).

    [45] Ren Q S, Zhang Y L, Wang R et al. Optical Spike-timing-dependent Plasticity with Weight-dependent Learning Window and Reward Modulation[J]. Optics Express, 23, 25247-25258(2015).

    [46] Tian T, Ni M, Wu G Q et al. Theoretical Investigation of Weight-dependent Optical Spike Timing Dependent Plasticity based on VCSOA[C], 1792, 012037(2021).

    [47] Fok M P, Tian Y, Rosenbluth D et al. Asynchronous Spiking Photonic Neuron for Lightwave Neuromorphic Signal Processing[J]. Optics Letters, 37, 3309-3311(2012).

    [48] Fok M P, Tian Y, Rosenbluth D et al. Pulse Lead/Lag Timing Detection for Adaptive Feedback and Control based on Optical Spike-Timing-Dependent Plasticity[J]. Optics Letters, 38, 419-421(2013).

    [49] Nahmias M A, Tait A N, Shastri B J et al. An Evanescent Hybrid Silicon Laser Neuron[C], 93-94(2013).

    [50] Nahmias M A, Tait A N, Shastri B J et al. Excitable Laser Processing Network Node in Hybrid Silicon: Analysis and Simulation[J]. Optics Express, 23, 26800-26813(2015).

    [51] Nahmias M A, Peng H T, de Lima T F et al. A Laser Spiking Neuron in a Photonic Integrated Circuit[J]. ArXiv Preprint ArXiv: 2012.08516(2020).

    [52] Ma B W, Zou W W. Demonstration of a Distributed Feedback Laser Diode Working as a Graded-Potential-Signaling Photonic Neuron and its Application to Neuromorphic Information Processing[J]. Science China Information Sciences, 63, 1-8(2020).

    [53] Shastri B J, Nahmias M A, Tait A N et al. Graphene Excitable Laser for Photonic Spike Processing[C], 1-2(2013).

    [54] Shastri B J, Nahmias M A, Tait A N et al. Spike Processing with A Graphene Excitable Laser[J]. Scientific Reports, 6, 1-12(2016).

    [55] Ma P Y, Shastri B J, De Lima T F et al. Simultaneous Excitatory and Inhibitory Dynamics in An Excitable Laser[J]. Optics Letters, 43, 3802-3805(2018).

    [56] Nahmias M A, Shastri B J, Tait A N et al. A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1-12(2013).

    [57] Shastri B J, Nahmias M A, Tait A N et al. SIMPEL: Circuit Model for Photonic Spike Processing Laser Neurons[J]. Optics Express, 23, 8029-8044(2015).

    [58] Deng T, Robertson J, Hurtado A. Controlled Propagation of Spiking Dynamics in Vertical-Cavity Surface-Emitting Lasers: Towards Neuromorphic Photonic Networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-8(2017).

    [59] Xiang S Y, Zhang Y H, Gong J K et al. STDP-based Unsupervised Spike Pattern Learning in a Photonic Spiking Neural Network with VCSELs and VCSOAs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-9(2019).

    [60] Xiang S Y, Ren Z X, Song Z W et al. Computing Primitive of Fully VCSEL-based All-optical Spiking Neural Network for Supervised Learning and Pattern Classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 32, 2494-2505(2020).

    [61] Han Y N, Xiang S Y, Ren Z X et al. Delay-weight Plasticity-Based Supervised Learning in Optical Spiking Neural Networks[J]. Photonics Research, 9, B119-B127(2021).

    [62] Zhang Y H, Robertson J, Xiang S Y et al. All-optical Neuromorphic Binary Convolution with a Spiking VCSEL Neuron for Image Gradient Magnitudes[J]. Photonics Research, 9, B201-B209(2021).

    [63] Gao S, Xiang S Y, Song Z W et al. All-optical Sudoku Solver with Photonic Spiking Neural Network[J]. Optics Communications, 495, 127068(2021).

    [64] Gao S, Xiang S Y, Song Z W et al. Motion Detection and Direction Recognition in a Photonic Spiking Neural Network Consisting of VCSELs-SA[J]. Optics Express, 30, 31701-31713(2022).

    [65] Fu C T, Xiang S Y, Han Y N et al. Multilayer Photonic Spiking Neural Networks: Generalized Supervised Learning Algorithm and Network Optimization[J]. Photonics, 9, 217(2022).

    [66] Thacker H D, Luo Y, Shi J et al. Flip-chip Integrated Silicon Photonic Bridge Chips for Sub-picojoule Per Bit Optical Links[C], 240-246(2010).

    [67] Hurtado A, Schires K, Henning I D et al. Investigation of Vertical Cavity Surface Emitting Laser Dynamics for Neuromorphic Photonic Systems[J]. Applied Physics Letters, 100, 103703(2012).

    [68] Lee J H, Delbruck T, Pfeiffer M. Training Deep Spiking Neural Networks Using Backpropagation[J]. Frontiers in Neuroscience, 10, 508(2016).

    [69] Coomans W, Gelens L, Beri S et al. Solitary and Coupled Semiconductor Ring Lasers as Optical Spiking Neurons[J]. Physical Review E, 84, 036209(2011).

    [70] Romeira B, Javaloyes J, Ironside C N et al. Excitability and Optical Pulse Generation in Semiconductor Lasers Driven by Resonant Tunneling Diode Photo-Detectors[J]. Optics Express, 21, 20931-20940(2013).

    [71] Hejda M, Alanis J A, Ortega-Piwonka I et al. Photonic Spiking Neural Network with Resonant Tunnelling Diode Optoelectronic Neurons[C], SW5E.1(2022).

    [72] Alexander K, Van Vaerenbergh T, Fiers M et al. Excitability in Optically Injected Microdisk Lasers with Phase Controlled Excitatory and Inhibitory Response[J]. Optics Express, 21, 26182-26191(2013).

    [73] Van Vaerenbergh T, Alexander K, Dambre J et al. Excitation Transfer between Optically Injected Microdisk Lasers[J]. Optics Express, 21, 28922-28932(2013).

    [74] Selmi F, Braive R, Beaudoin G et al. Relative Refractory Period in an Excitable Semiconductor Laser[J]. Physical Review Letters, 112, 183902(2014).

    [75] Pammi V A, Alfaro-Bittner K, Clerc M G et al. Photonic Computing with Single and Coupled Spiking Micropillar Lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-7(2019).

    [76] Mesaritakis C, Kapsalis A, Bogris A et al. Artificial Neuron based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers[J]. Scientific Reports, 6, 1-10(2016).

    [77] Sarantoglou G, Skontranis M, Mesaritakis C. All Optical Integrate and Fire Neuromorphic Node based on Single Section Quantum Dot Laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-10(2019).

    [78] Xiang S Y, Shi Y C, Guo X X et al. Hardware-algorithm Collaborative Computing with Photonic Spiking Neuron Chip Based on Integrated Fabry-P\’erot Laser with Saturable Absorber[J]. ArXiv Preprint ArXiv: 2204.08362(2022).

    [79] Van Vaerenbergh T, Fiers M, Vandoorne K et al. Towards a Photonics Spiking Neuron: Excitability in a Silicon-on-Insulator Microring[C], 767-770(2012).

    [80] Van Vaerenbergh T, Fiers M, Bienstman P et al. Towards Integrated Optical Spiking Neural Networks: Delaying Spikes on Chip[C], 1-2(2013).

    [81] Chakraborty I, Saha G, Sengupta A et al. Toward Fast Neural Computing Using All-photonic Phase Change Spiking Neurons[J]. Scientific Reports, 8, 1-9(2018).

    [82] Feldmann J, Youngblood N, Wright C D et al. All-optical Spiking Neurosynaptic Networks with Self-Learning Capabilities[J]. Nature, 569, 208-214(2019).

    [83] Jha A, Huang C, Peng H T et al. Photonic Spiking Neural Networks and Graphene-on-Silicon Spiking Neurons[J]. Journal of Lightwave Technology, 40, 2901-2914(2022).

    [84] Han Y N, Xiang S Y, Zhang Y N et al. An All-MRR-based Photonic Spiking Neural Network for Spike Sequence Learning[J]. Photonics, 9, 120(2022).

    [85] Van Vaerenbergh T, Fiers M, Mechet P et al. Cascadable Excitability in Microrings[J]. Optics Express, 20, 20292-20308(2012).

    [86] Yang Y L, Deng Y, Xiong X Y et al. Neuron-like Optical Spiking Generation based on Silicon Microcavity[C], 970-974(2020).

    [87] Xiang J L, Torchy A, Guo X H et al. All-optical Spiking Neuron Based on Passive Microresonator[J]. Journal of Lightwave Technology, 38, 4019-4029(2020).

    [88] Tyszka K, Furman M, Mirek R et al. Leaky Integrate-and-Fire Mechanism in Exciton-polariton Condensates for Photonic Spiking Neurons[J]. ArXiv Preprint ArXiv: 2111.13123(2021).

    Te KE, Ying ZHU, Chu-yu PENG, Xiao HU, Xi XIAO. Research History and Prospect of Photonic Spiking Neural Networks[J]. Study On Optical Communications, 2023, 49(1): 17
    Download Citation