[1] Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021).
[2] H. Zhang, L.J. Yao, L.W. Quan et al., Theories for triboelectric nanogenerators: A comprehensive review. Nanotechnol. Rev. 9(1), 610–625 (2020).
[3] T.H. Cheng, Q. Gao, Z.L. Wang, The current development and future outlook of triboelectric nanogenerators: A survey of literature. Adv. Mater. Technol. 4(3), 1800588 (2019)
[4] T.X. Xiao, X. Liang, T. Jiang et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28(35), 1802634 (2018).
[5] Z.L. Wang, A.C. Wang, On the origin of contact-electrification. Mater. Today 30, 34–51 (2019).
[6] Y.L. Nannan Wang, E. Ye, Z. Li, D. Wang, Contact electrification behaviors of solid–liquid interface: Regulation, mechanisms, and applications. Adv. Energy Sustain. (2023).
[7] W. Tang, B.D. Chen, Z.L. Wang, Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 29(41), 1901069 (2019)
[8] S. Lin, X. Chen, Z.L. Wang, Contact electrification at the liquid-solid interface. Chem. Rev. 122(5), 5209–5232 (2022).
[9] Y. Lu, L. Jiang, Y. Yu et al., Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 13(1), 5316 (2022).
[10] L. Sun, Z. Wang, C. Li et al., Probing contact electrification between gas and solid surface. Nanoenergy Adv. 3(1), 1–11 (2023).
[11] Y. Dong, S. Xu, C. Zhang et al., Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Sci. Adv. 8(48), eadd0464 (2022).
[12] J. Tian, X. Chen, Z.L. Wang, Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 31(24), 242001 (2020).
[13] H. Wang, L. Xu, Z. Wang, Advances of high-performance triboelectric nanogenerators for blue energy harvesting. Nanoenergy Adv. 1(1), 32–57 (2021).
[14] J.V. Vidal, V. Slabov, A.L. Kholkin et al., Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review. Nano-Micro Lett. 13(1), 199 (2021).
[15] H. Shao, H. Wang, Y. Cao et al., Efficient conversion of sound noise into electric energy using electrospun polyacrylonitrile membranes. Nano Energy 75, 104956 (2020).
[16] J. Shen, B. Li, Y. Yang et al., Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 216, 114595 (2022).
[17] X. Wang, X. Chen, M. Iwamoto, Recent progress in the development of portable high voltage source based on triboelectric nanogenerator. Smart Mater. Medicine 1, 66–76 (2020).
[18] C. Zhang, Z.L. Wang, Tribotronics-a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016).
[19] A. Chen, C. Zhang, G. Zhu et al., Polymer materials for high-performance triboelectric nanogenerators. Adv. Sci. 7(14), 2000186 (2020).
[20] M.P. Kim, C.W. Ahn, Y. Lee et al., Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy 82, 105697 (2021).
[21] K. Parida, V. Kumar, W. Jiangxin et al., Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv. Mater. 29(37), 1702181 (2017).
[22] T. Liu, M. Liu, S. Dou et al., Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3), 2818–2826 (2018).
[23] Y.H. Zhou, W.L. Deng, J. Xu et al., Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 1(8), 100142 (2020)
[24] D. Zhao, X. Yu, J.L. Wang et al., A standard for normalizing the outputs of triboelectric nanogenerators in various modes. Energy Environ. Sci. 15(9), 3901–3911 (2022).
[25] C. Cai, B. Luo, Y. Liu et al., Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 52, 299–326 (2022).
[26] Q. Lu, M. Sun, B. Huang et al., Electronic view of triboelectric nanogenerator for energy harvesting: Mechanisms and applications. Adv. Energy Sustain. Res. 2(4), 2000087 (2021).
[27] S. Pan, Z. Zhang, Fundamental theories and basic principles of triboelectric effect: A review. Friction 7(1), 2–17 (2018).
[28] B. Sun, D. Xu, Z. Wang et al., Interfacial structure design for triboelectric nanogenerators. Battery Energy 1(3), 220001 (2022).
[29] W. Zhang, Y. Shi, Y. Li et al., A review: Contact electrification on special interfaces. Front. Mater. 9, 909746 (2022).
[30] Y. Zheng, H. Zhao, Y. Cai et al., Recent advances in one-dimensional micro/nanomotors: Fabrication, propulsion and application. Nano-Micro Lett. 15(1), 20 (2022).
[31] S. Lin, L. Xu, A. Chi Wang et al., Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 11(1), 399 (2020).
[32] Y.S. Zhou, S. Li, S. Niu et al., Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 9(12), 3705–3713 (2016).
[33] Y.S. Zhou, Y. Liu, G. Zhu et al., In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 13(6), 2771–2776 (2013).
[34] C. Xu, Y. Zi, A.C. Wang et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30(15), e1706790 (2018).
[35] C. Xu, B. Zhang, A.C. Wang et al., Contact-electrification between two identical materials: Curvature effect. ACS Nano 13(2), 2034–2041 (2019).
[36] S. Lin, X. Chen, Z.L. Wang, The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 76, 105070 (2020).
[37] W. Xu, X. Zhou, C. Hao et al., Slips-teng: Robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl. Sci. Rev. 6(3), 540–550 (2019).
[38] W. Xu, H. Zheng, Y. Liu et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020).
[39] F. Zhan, A.C. Wang, L. Xu et al., Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano 14(12), 17565–17573 (2020).
[40] Z.H. Loh, G. Doumy, C. Arnold et al., Observation of the fastest chemical processes in the radiolysis of water. Science 367(6474), 179–182 (2020).
[41] Y.H. Wang, S. Zheng, W.M. Yang et al., In situ raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600(7887), 81–85 (2021).
[42] R. Zhang, H. Lin, Y. Pan et al., Liquid–liquid triboelectric nanogenerator for harvesting distributed energy. Adv. Funct. Mater. 32(51), 08393 (2022).
[43] S.A. Lone, K.C. Lim, K. Kaswan et al., Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy 99, 107318 (2022).
[44] Y.H. Liu, J.L. Mo, Q. Fu et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020)
[45] W.Y. Qiao, Z.H. Zhao, L.L. Zhou et al., Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 32(46), 2208544 (2022)
[46] Y. Yu, Q. Gao, D. Zhao et al., Influence of mechanical motions on the output characteristics of triboelectric nanogenerators. Mater. Today Phys. 25, 100701 (2022)
[47] Z. Zhao, L. Zhou, S. Li et al., Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 12(1), 4686 (2021).
[48] S. Li, J. Nie, Y. Shi et al., Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 32(25), e2001307 (2020).
[49] K.Y. Lee, H.J. Yoon, T. Jiang et al., Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 6(11), 1502566 (2016).
[50] T. Jing, B. Xu, Y. Yang et al., Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators. Nano Energy 78, 105374 (2020).
[51] W.T. Cao, H. Ouyang, W. Xin et al., A stretchable highoutput triboelectric nanogenerator improved by mxene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020)
[52] R.M. Wen, B. Zhao, L.M. Fan et al., Controlling the output performance of triboelectric nanogenerator through filling isostructural metal-organic frameworks with varying functional groups. Adv. Mater. Technol. (2023).
[53] Y. Wu, T.J. Cuthbert, Y. Luo et al., Cross-link-dependent ionogel-based triboelectric nanogenerators with slippery and antireflective properties. Small 19(24), e2301381 (2023).
[54] X. Tao, S. Fu, S. Li et al., Large and tunable ranking shift in triboelectric series of polymers by introducing phthalazinone moieties. Small Methods 7(6), e2201593 (2023).
[55] F.R. Fan, L. Lin, G. Zhu et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109–3114 (2012).
[56] X. Sun, Y. Liu, N. Luo et al., Controlling the triboelectric properties and tribological behavior of polyimide materials via plasma treatment. Nano Energy 102, 107691 (2022).
[57] X. Tao, S. Li, Y. Shi et al., Triboelectric polymer with high thermal charge stability for harvesting energy from 200 °c flowing air. Adv. Funct. Mater. 31(49), 2106082 (2021).
[58] Z. Liu, Y. Huang, Y. Shi et al., Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nat. Commun. 13(1), 4083 (2022).
[59] Z.Q. Liu, Y.Z. Huang, Y.X. Shi et al., Creating ultrahigh and long-persistent triboelectric charge density on weak polar polymer via quenching polarization. Adv. Funct. Mater. (2023).
[60] S.Y. Li, Y. Fan, H.Q. Chen et al., Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 13(3), 896–907 (2020).
[61] J. Wang, H.Y. Wu, S.K. Fu et al., Enhancement of output charge density of teng in high humidity by water molecules induced self-polarization effect on dielectric polymers. Nano Energy 104, 107916 (2022)
[62] L. Calzolai, C.M. Gorst, Z.H. Zhao et al., 1h NMR investigation of the electronic and molecular structure of the four-iron cluster ferredoxin from the hyperthermophile pyrococcus furiosus. Identification of asp 14 as a cluster ligand in each of the four redox states. Biochemistry 34(36), 11373–11384 (1995)
[63] J.C. Maggiore, J.C. Burrell, K.D. Browne et al., Tissue engineered axon-based “living scaffolds” promote survival of spinal cord motor neurons following peripheral nerve repair. J. Tissue Eng. Regen. Med. 14(12), 1892–1907 (2020).
[64] O. Verners, L. Lapčinskis, L. Ģermane et al., Smooth polymers charge negatively: Controlling contact electrification polarity in polymers. Nano Energy 104, 107914 (2022).
[65] D. Guan, X. Cong, J. Li et al., Quantitative characterization of the energy harvesting performance of soft-contact sphere triboelectric nanogenerator. Nano Energy 87, 106186 (2021).
[66] B. Cheng, Q. Xu, Y. Ding et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12(1), 4782 (2021).
[67] L.S. McCarty, G.M. Whitesides, Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47(12), 2188–2207 (2008).
[68] B.D. Chen, W. Tang, C. He et al., Ultrafine capillary-tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing. Adv. Mater. Technol. 3(1), 1700229 (2018).
[69] J. Nie, Z. Ren, L. Xu et al., Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Adv. Mater. 32(2), e1905696 (2020).
[70] L. Zhang, X. Li, Y. Zhang et al., Regulation and influence factors of triboelectricity at the solid-liquid interface. Nano Energy 78, 105370 (2020).
[71] X. Li, L. Zhang, Y. Feng et al., Reversible temperature-sensitive liquid–solid triboelectrification with polycaprolactone material for wetting monitoring and temperature sensing. Adv. Funct. Mater. 31(17), 2010220 (2021).
[72] H. Cho, J. Chung, G. Shin et al., Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: The role of hierarchical structures. Nano Energy 56, 56–64 (2019).
[73] S. Lin, M. Zheng, J. Luo et al., Effects of surface functional groups on electron transfer at liquid-solid interfacial contact electrification. ACS Nano 14(8), 10733–10741 (2020).
[74] X.Y. Li, J. Tao, J. Zhu et al., A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. Apl. Mater. 5(7), 074104 (2017).
[75] A. Shahzad, K.R. Wijewardhana, J.-K. Song, Contact electrification efficiency dependence on surface energy at the water-solid interface. Appl. Phys. Lett. (2018).
[76] G. Xue, Y. Xu, T. Ding et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017).
[77] D.L. Vu, C.D. Le, C.P. Vo et al., Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator. Compos. B: Engin. 223, 109135 (2021).
[78] Q. Zeng, A. Chen, X. Zhang et al., A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 35(7), e2208139 (2023).
[79] M. Knobel, W.C. Nunes, L.M. Socolovsky et al., Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 8(6), 2836–2857 (2008).
[80] Y.H. Wu, Y. Luo, J.K. Qu et al., Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy 75, 105027 (2020)
[81] C. Savin, C. Nejneru, C.A. Tugui et al., Analysis of contact angle for metallic materials in wastewater pumps. Rev. Chim-Bucharest 70(8), 2811–2817 (2019)
[82] N.A. Kermani, I. Petrushina, A. Nikiforov et al., Corrosion behavior of construction materials for ionic liquid hydrogen compressor. Int. J. Hydrogen Energ. 41(38), 16688–16695 (2016).
[83] Y. Liu, W. Liu, Z. Wang et al., Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11(1), 1599 (2020).
[84] J. Chung, H. Cho, H. Yong et al., Versatile surface for solid-solid/liquid-solid triboelectric nanogenerator based on fluorocarbon liquid infused surfaces. Sci. Technol. Adv. Mater. 21(1), 139–146 (2020).
[85] L.P. Chen, X.J. Feng, Enhanced catalytic reaction at an air-liquid-solid triphase interface. Chem. Sci. 11(12), 3124–3131 (2020).
[86] Q. Tang, H.Y. Guo, P. Yan et al., Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. Ecomat 2(4), 12060 (2020)
[87] P. Yang, Y.X. Shi, X.L. Tao et al., Radical anion transfer during contact electrification and its compensation for charge loss in triboelectric nanogenerator. Matter 6(4), 1295–1311 (2023).
[88] W.J. Li, Y.Y. Xiang, W. Zhang et al., Ordered mesoporous SiO2 nanoparticles as charge storage sites for enhanced triboelectric nanogenerators. Nano Energy 113, 108539 (2023).
[89] B. Wang, Y. Wu, Y. Liu et al., New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting. ACS Appl. Mater. Interfaces 12(28), 31351–31359 (2020).
[90] Y. Feng, L. Ling, J. Nie et al., Self-powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built-in triboelectric nanogenerators. ACS Nano 11(12), 12411–12418 (2017).
[91] J. Xiong, G. Thangavel, J. Wang et al., Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 6(29), eabb4246 (2020).
[92] J. Nie, Z. Wang, Z. Ren et al., Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 10(1), 2264 (2019).
[93] R. Zhang, H. Lin, Y. Pan et al., Liquid–liquid triboelectric nanogenerator for harvesting distributed energy. Adv. Funct. Mater. 32(51), 2270293 (2022).
[94] F. Wang, P. Yang, X.L. Tao et al., Study of contact electrification at liquid-gas interface. ACS Nano 15(11), 18206–18213 (2021).
[95] G. Yao, L. Kang, J. Li et al., Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9(1), 5349 (2018).
[96] S. Du, N. Zhou, G. Xie et al., Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing. Nano Energy 85, 106004 (2021).
[97] S. Gokhool, S. Bairagi, C. Kumar et al., Reflections on boosting wearable triboelectric nanogenerator performance via interface optimisation. Results Eng. 17, 100808 (2023).
[98] Y. Zhang, X. Gao, Y. Wu et al., Self-powered technology based on nanogenerators for biomedical applications. Exploration 1(1), 90–114 (2021).
[99] X. Cao, Y. Xiong, J. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of internet of things. Nano-Micro Lett. 15(1), 14 (2022).
[100] Z. Wu, H. Guo, W. Ding et al., A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 13(2), 2349–2356 (2019).
[101] X. Qu, X. Ma, B. Shi et al., Refreshable braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 31(5), 2006612 (2020).
[102] L. Xu, H. Wu, G. Yao et al., Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12(10), 10262–10271 (2018).
[103] Q. Zeng, Y. Luo, X. Zhang et al., A bistable triboelectric nanogenerator for low-grade thermal energy harvesting and solar thermal energy conversion. Small (2023).
[104] M.L. Di Lorenzo, M.C. Righetti, Crystallization-induced formation of rigid amorphous fraction. Polym. Crystal. 1(2), e10023 (2018).
[105] I. Kim, H. Roh, W. Choi et al., Air-gap embedded triboelectric nanogenerator via surface modification of non-contact layer using sandpapers. Nanoscale 13(19), 8837–8847 (2021).
[106] S.-B. Jeon, M.-L. Seol, D. Kim et al., Self-powered ion concentration sensor with triboelectricity from liquid-solid contact electrification. Adv. Electron. Mater. 2(5), 1600006 (2016).
[107] A. Ibrahim, M. Jain, E. Salman et al., A smart knee implant using triboelectric energy harvesters. Smart Mater. Struct. 28(2), 025040 (2019).
[108] S. Dong, F. Xu, Y. Sheng et al., Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for e-textile power sources. Nano Energy 78, 105327 (2020).
[109] P.Y. Feng, Z. Xia, B. Sun et al., Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification. ACS Appl. Mater. Interfaces 13(14), 16916–16927 (2021).
[110] G. Liu, H. Guo, S. Xu et al., Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. (2019).
[111] F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012).
[112] R. Lei, Y. Shi, Y. Ding et al., Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 13(7), 2178–2190 (2020).
[113] X. Dong, Q. Liu, S. Liu et al., Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Adv. Fiber Mater. 4(4), 885–893 (2022).
[114] S. Hu, Z. Yuan, R. Li et al., Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines. Nano Lett. 22(13), 5584–5591 (2022).
[115] S.-F. Leung, H.-C. Fu, M. Zhang et al., Blue energy fuels: Converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energy Environ. Sci. 13(5), 1300–1308 (2020).
[116] P.F. Chen, J. An, R.W. Cheng et al., Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy Environ. Sci. 14(8), 4523–4532 (2021).
[117] H. Ouyang, Z. Liu, N. Li et al., Symbiotic cardiac pacemaker. Nat. Commun. 10(1), 1821 (2019).
[118] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey. Comput. Netw. 54(15), 2787–2805 (2010).
[119] S. Li, D. Liu, Z. Zhao et al., A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. ACS Nano 14(2), 2475–2482 (2020).
[120] J. Wang, C. Meng, Q. Gu et al., Normally transparent tribo-induced smart window. ACS Nano 14(3), 3630–3639 (2020).
[121] H. Xuan, Q. Guan, H. Tan et al., Light-controlled triple-shape-memory, high-permittivity dynamic elastomer for wearable multifunctional information encoding devices. ACS Nano 16(10), 16954–16965 (2022).
[122] Y. Luo, J. Sun, Q. Zeng et al., Programmable tactile feedback system for blindness assistance based on triboelectric nanogenerator and self-excited electrostatic actuator. Nano Energy 111, 108425 (2023).
[123] S. Shen, J. Yi, Z. Sun et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14(1), 225 (2022).
[124] X. Pu, H. Guo, J. Chen et al., Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017).
[125] P. Yang, Y. Shi, X. Tao et al., Self-powered virtual olfactory generation system based on bionic fibrous membrane and electrostatic field accelerated evaporation. EcoMat 5(2), 12298 (2022).
[126] Y. Shi, R. Lei, F. Li et al., Self-powered persistent phosphorescence for reliable optical display. ACS Energy Lett. 6(9), 3132–3140 (2021).
[127] Y. Shi, F. Wang, J. Tian et al., Self-powered electro-tactile system for virtual tactile experiences. Sci. Adv. 7(6), abe2943 (2021).
[128] X. Qu, Z. Liu, P. Tan et al., Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 8(31), eabq2521 (2022).
[129] P. Yang, Y. Shi, S. Li et al., Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16(3), 4654–4665 (2022).
[130] T. Andreadou, D. Kontaxakis, K.V. Iakovou, Blue energy plants and preservation of local natural and cultural resources. Front Energy Res. 7, 00040 (2019)
[131] X.J. Zhao, S.Y. Kuang, Z.L. Wang et al., Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12(5), 4280–4285 (2018).
[132] T. Jiang, H. Pang, J. An et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10(23), 2000064 (2020).
[133] X. Yan, W. Xu, Y. Deng et al., Bubble energy generator. Sci. Adv. 8(25), eabo7698 (2022).
[134] G. Zhu, Y. Su, P. Bai et al., Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014).
[135] X. Li, J. Tao, X. Wang et al., Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 8(21), 1800705 (2018).
[136] Z. Ren, Y. Ding, J. Nie et al., Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators. ACS Appl. Mater. Interfaces 11(6), 6143–6153 (2019).
[137] S. Hu, Z. Shi, R. Zheng et al., Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl. Mater. Interfaces 12(36), 40021–40030 (2020).
[138] W. Sun, Y. Zheng, T. Li et al., Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 217, 119388 (2021).
[139] G. Li, P.-Y.A. Chuang, Identifying the forefront of electrocatalytic oxygen evolution reaction: Electronic double layer. Appl. Catal. B Environ. 239, 425–432 (2018).
[140] S. Shen, J. Fu, J. Yi et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13(1), 194 (2021).
[141] J. Dong, S. Huang, J. Luo et al., Supercapacitor-inspired triboelectric nanogenerator based on electrostatic double layer. Nano Energy 95, 106971 (2022).
[142] K.S. Zhao, K.J. He, Dielectric relaxation of suspensions of nanoscale particles surrounded by a thick electric double layer. Phys. Rev. B 74(20), 205319 (2006).
[143] Z. Adamczyk, P. Warszynski, Role of electrostatic interactions in particle adsorption. Adv. Colloid Interfaces 63, 41–149 (1996).
[144] Z. Wang, A. Berbille, Y. Feng et al., Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 13(1), 130 (2022).
[145] J. Fu, G. Xu, H. Wu et al., Liquid-interfaces-based triboelectric nanogenerator: An emerging power generation method from liquid-energy nexus. Adv. Energy Sustain. Res. 3(9), 2200051 (2022).
[146] P. Wang, S. Zhang, L. Zhang et al., Non-contact and liquid–liquid interfacing triboelectric nanogenerator for self-powered water/liquid level sensing. Nano Energy 72, 104703 (2020).
[147] C. Gong, X. Yuan, D. Xing et al., Fast sulfate formation initiated by the spin-forbidden excitation of SO(2) at the air-water interface. J. Am. Chem. Soc. 144(48), 22302–22308 (2022).
[148] J.J. Chen, L.F. Yan, W.Y. Song et al., Interfacial characteristics of carbon nanotube-polymer composites: A review. Compos. Part A-Appl. Sci. Manufact. 114, 149–169 (2018).
[149] H. Ryu, H.M. Park, M.K. Kim et al., Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 12(1), 4374 (2021).
[150] M.T. Rahman, S.M.S. Rana, M. Salauddin et al., Biomechanical energy-driven hybridized generator as a universal portable power source for smart/wearable electronics. Adv. Energy Mater. 10(12), 1903663 (2020).
[151] X. Wang, S. Niu, Y. Yin et al., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5(24), 1501467 (2015).
[152] Z. Lin, B. Zhang, H. Guo et al., Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64, 103908 (2019).
[153] Y.C. Huang, D.X. Liu, X.Y. Gao et al., Flexible liquid-based continuous direct-current tribovoltaic generators enable self-powered multi-modal sensing. Adv. Funct. Mater. 33(1), 2209484 (2023).
[154] M. Xu, S. Wang, S.L. Zhang et al., A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 57, 574–580 (2019).
[155] J. Liu, Z. Wen, H. Lei et al., A liquid-solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kpa(-1). Nano-Micro Lett. 14(1), 88 (2022).
[156] I.W. Tcho, W.G. Kim, Y.K. Choi, A self-powered character recognition device based on a triboelectric nanogenerator. Nano Energy 70, 104534 (2020)
[157] D. Yang, Z. Liu, P. Yang et al., A curtain purification system based on a rabbit fur-based rotating triboelectric nanogenerator for efficient photocatalytic degradation of volatile organic compounds. Nanoscale 15(14), 6709–6721 (2023).
[158] D.W. Jiang, M.Y. Lian, M.J. Xu et al., Advances in triboelectric nanogenerator technology-applications in self-powered sensors, internet of things, biomedicine, and blue energy. Adv. Compos. Hybrid. Mater. 6(2), 57 (2023).
[159] S. Tsukahara, Recent analytical methodologies on equilibrium, kinetics, and dynamics at liquid/liquid interface. Anal. Chim. Acta 556(1), 16–25 (2006).
[160] N. Divakaran, J.P. Das, P.V.A. Kumar et al., Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. J. Manuf. Syst. 62, 477–502 (2022).
[161] H. Xiang, Y. Zeng, X. Huang et al., From triboelectric nanogenerator to multifunctional triboelectric sensors: A chemical perspective toward the interface optimization and device integration. Small 18(43), e2107222 (2022).
[162] J.X. Zhu, M.L. Zhu, Q.F. Shi et al., Progress in teng technology-a journey from energy harvesting to nanoenergy and nanosystem. Ecomat 2(4), 12058 (2020)
[163] X.S. Zhang, M.D. Han, B. Kim et al., All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47, 410–426 (2018).
[164] O. Mishima, H.E. Stanley, The relationship between liquid, supercooled and glassy water. Nature 396(6709), 329–335 (1998).
[165] S. Radhakrishnan, N. Joseph, N.P. Vighnesh et al., Recent updates on triboelectric nanogenerator based advanced biomedical technologies: A short review. Results Engin. 16, 100782 (2022).
[166] R. Wu, S. Liu, Z. Lin et al., Industrial fabrication of 3d braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv. Energy Mater. 12(31), 2201288 (2022).
[167] A. Chen, Q. Zeng, L. Tan et al., A novel hybrid triboelectric nanogenerator based on the mutual boosting effect of electrostatic induction and electrostatic breakdown. Energy Environ. Sci. 16(8), 3486–3496 (2023).