• Journal of Inorganic Materials
  • Vol. 39, Issue 11, 1275 (2024)
Hao CAI, Qihang WANG*, and Zhaoyong ZOU*
Author Affiliations
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20240075 Cite this Article
    Hao CAI, Qihang WANG, Zhaoyong ZOU. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275 Copy Citation Text show less
    References

    [1] S FERMANI, B N DŽAKULA, M REGGI et al. Effects of magnesium and temperature control on aragonite crystal aggregation and morphology. CrystEngComm, 2451(2017).

    [2] J D RODRIGUEZ-BLANCO, S SHAW, P BOTS et al. The role of Mg in the crystallization of monohydrocalcite. Geochimica et Cosmochimica Acta, 204(2014).

    [3] C Y WANG, Y XU, Y L LIU et al. Synthesis and characterization of lamellar aragonite with hydrophobic property. Materials Science & Engineering: C, 843(2009).

    [4] L B GOWER. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chemical Reviews, 4551(2008).

    [5] Q WANG, B YUAN, W HUANG et al. Bioprocess inspired formation of calcite mesocrystals by cation-mediated particle attachment mechanism. National Science Review, nwad014(2023).

    [6] J T SU, F J ZHU, G Y ZHANG et al. Transformation of amorphous calcium carbonate nanoparticles into aragonite controlled by ACCBP. CrystEngComm, 2125(2016).

    [7] S KARTHIKA, T K RADHAKRISHNAN, P KALAICHELVI. A review of classical and nonclassical nucleation theories. Crystal Growth & Design, 6663(2016).

    [8] Q WANG, L HU, X WANG et al. Expanding from materials to biology inspired by biomineralization. Interdisciplinary Materials, 165(2024).

    [9] Z ZOU, W J E M HABRAKEN, G MATVEEVA et al. A hydrated crystalline calcium carbonate phase: calcium carbonate hemihydrate. Science, 396(2019).

    [11] Z LU, R E M RICKABY, H KENNEDY et al. An ikaite record of late holocene climate at the antarctic peninsula. Earth and Planetary Science Letters, 108(2012).

    [12] Y POLITI, T ARAD, E KLEIN et al. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 1161(2004).

    [13] Y POLITI, R A METZLER, M ABRECHT et al. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proceedings of the National Academy of Sciences of the United States of America, 17362(2008).

    [14] J AIZENBERG, G LAMBERT, S WEINER et al. Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. Journal of the American Chemical Society, 32(2002).

    [15] I KHAIROUN, D MAGNE, O GAUTHIER et al. In vitro characterization and in vivo properties of a carbonated apatite bone cement. Journal of Biomedical Materials Research, 633(2002).

    [16] W J E M HABRAKEN, A MASIC, L BERTINETTI et al. Layered growth of crayfish gastrolith: about the stability of amorphous calcium carbonate and role of additives. Journal of Structural Biology, 28(2014).

    [17] F KRAUSS, W SCHRIEVER. Die hydrate des calcium carbonats. Zeitschrift Für Anorganische Und Allgemeine Chemie, 259(2004).

    [18] K DAHL, B BUCHARDT. Monohydrocalcite in the arctic Ikka Fjord, SW Greenland: first reported marine occurrence. Journal of Sedimentary Research, 460(2006).

    [19] I P SWAINSON. The structure of monohydrocalcite and the phase composition of the beachrock deposits of Lake Butler and Lake Fellmongery, South Australia. American Mineralogist, 1014(2008).

    [20] G YAMAMOTO, K ATSUSHI, O SATORU. Structural variations of amorphous magnesium carbonate during nucleation, crystallization, and decomposition of nesquehonite MgCO3·3H2O. Physics and Chemistry of Minerals, 305(2022).

    [21] S SON, W Q LI, J Y LEE et al. On the coordination of Mg2+ in aragonite: ab-initio absorption spectroscopy and isotope fractionation study. Geochimica et Cosmochimica Acta, 324(2020).

    [22] B PURGSTALLER, F KONRAD, M DIETZEL et al. Control of Mg2+/Ca2+ activity ratio on the formation of crystalline carbonate minerals via an amorphous precursor. Crystal Growth & Design, 1069(2017).

    [23] M MATSUMOTO, T FUKUNAGA, K ONOE. Polymorph control of calcium carbonate by reactive crystallization using microbubble technique. Chemical Engineering Research and Design, 1624(2010).

    [24] S TADIER, S ROKIDI, C REY et al. Crystal growth of aragonite in the presence of phosphate. Journal of Crystal Growth, 44(2017).

    [25] M G WILLINGER, J POLLEUX, M ANTONIETTI et al. Structural evolution of aragonite superstructures obtained in the presence of the siderophore deferoxamine. CrystEngComm, 3927(2015).

    [26] F J ZHU, T NISHIMURA, T SAKAMOTO et al. Tuning the stability of CaCO3 crystals with magnesium ions for the formation of aragonite thin films on organic polymer templates. Chemistry-An Asian Journal, 3002(2013).

    [27] M SUZUKI, T KOGURE, S WEINER et al. Formation of aragonite crystals in the crossed lamellar microstructure of limpet shells. Crystal Growth & Design, 4850(2011).

    [28] W K PARK, S J KO, S W LEE et al. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. Journal of Crystal Growth, 2593(2008).

    [29] B R HEYWOOD, S MANN. Molecular construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed langmuir monolayers. Chemistry of Materials, 311(1994).

    [30] Y LEVI-KALISMAN, S RAZ, S WEINER et al. X-ray absorption spectroscopy studies on the structure of a biogenic “amorphous” calcium carbonate phase. Journal of the Chemical Society, 3977(2000).

    [31] R S K LAM, J M CHARNOCK, A LENNIE et al. Synthesis-dependant structural variations in amorphous calcium carbonate. CrystEngComm, 1226(2007).

    [32] W SUN, S JAYARAMAN, W CHEN et al. Nucleation of metastable aragonite CaCO3 in seawater. Proceedings of the National Academy of Sciences of the United States of America, 3199(2015).

    [33] Z HUANG, G ZHANG. Biomimetic synthesis of aragonite nanorod aggregates with unusual morphologies using a novel template of natural fibrous proteins at ambient condition. Crystal Growth & Design, 1816(2012).

    [34] T MUNEMOTO, K FUKUSHI. Transformation kinetics of monohydrocalcite to aragonite in aqueous solutions. Journal of Mineralogical and Petrological Sciences, 345(2008).

    [35] M NEUMANN, M EPPLE. Monohydrocalcite and its relationship to hydrated amorphous calcium carbonate in biominerals. European Journal of Inorganic Chemistry, 1953(2007).

    [36] T CHEN, A NEVILLE, M YUAN. Assessing the effect of Mg2+ on CaCO3 scale formation-bulk precipitation and surface deposition. Journal of Crystal Growth, e1341(2005).

    [37] P BOTS, L G BENNING, J D RODRIGUEZ-BLANCO et al. Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Crystal Growth & Design, 3806(2012).

    [38] F A ANDERSEN, L J C BREČEVIĆ. Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chemica Scandinavica, 1018(1991).

    [39] E E COLEYSHAW, G CRUMP, W P GRIFFITH. Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2231(2003).

    [40] E LOSTE, R M WILSON, R SESHADRI et al. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. Journal of Crystal Growth, 206(2003).

    [41] Y M JU, F HUANG, X DING et al. Phase transformation-induced Mg isotope fractionation in Mg-mediated CaCO3 mineralization. Nano Research, 3597(2023).

    [42] Y POLITI, D R BATCHELOR, P ZASLANSKY et al. Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: a structure-function investigation. Chemistry of Materials, 161(2010).

    [43] J D RODRIGUEZ-BLANCO, S SHAW, P BOTS et al. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. Journal of Alloys and Compounds, S477(2012).

    [44] S YAGI, K FUKUSHI. Phosphate sorption on monohydrocalcite. Journal of Mineralogical and Petrological Sciences, 109(2011).

    [45] TOMMASO D DI, LEEUW N H DE. Structure and dynamics of the hydrated magnesium ion and of the solvated magnesium carbonates: insights from first principles simulations. Physical Chemistry Chemical Physics, 894(2010).

    [46] A S MOOMAW, M E MAGUIRE. The unique nature of Mg2+channels. Physiology, 275(2008).

    [47] Z ZOU, J XIE, E MACÍAS-SÁNCHEZ et al. Nonclassical crystallization of amorphous calcium carbonate in the presence of phosphate ions. Crystal Growth Design, 414(2021).

    [48] Z ZOU, L BERTINETTI, Y POLITI et al. Control of polymorph selection in amorphous calcium carbonate crystallization by poly (aspartic acid): two different mechanisms. Small, 1603100(2017).

    [49] W HUANG, Q WANG, W CHI et al. Multiple crystallization pathways of amorphous calcium carbonate in the presence of poly (aspartic acid) with a chain length of 30. CrystEngComm, 4809(2022).

    Hao CAI, Qihang WANG, Zhaoyong ZOU. Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion [J]. Journal of Inorganic Materials, 2024, 39(11): 1275
    Download Citation