Sheng-ming WANG, Tao WANG, Sheng-jin TANG, Yan-zhao SU. Hyperspectral Anomaly Detection Based on 3D Convolutional Autoencoder Network[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1270

Search by keywords or author
- Spectroscopy and Spectral Analysis
- Vol. 42, Issue 4, 1270 (2022)

Fig. 1. Comparing 2D convolution operation (a) and 3D convolution operation (b)

Fig. 2. 3D convolution

Fig. 3. Unsupervised anomaly detection framework based on 3D-CAE

Fig. 4. Results of San Diego datasets anomaly detection
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD

Fig. 5. Results of Los Angeles datasets anomaly detection
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD

Fig. 6. Results of Pavia datasets anomaly detection
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD
(a): False color image; (b): Reference map; (c): RX; (d): SRX; (e): CRD; (f): UNRS; (g): LRASR; (h): 3D-CAEAD

Fig. 7. ROC curves of San Diego datasets

Fig. 8. ROC curves of Los Angeles datasets

Fig. 9. ROC curves of Pavia datasets
|
Table 1. Information of datasets
|
Table 2. 3D-CAE parameter settings
|
Table 3. AUC values of three groups of datasets

Set citation alerts for the article
Please enter your email address