• Nano-Micro Letters
  • Vol. 16, Issue 1, 198 (2024)
Huitao Yu, Lianqiang Peng, Can Chen, Mengmeng Qin*, and Wei Feng**
Author Affiliations
  • School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01426-0 Cite this Article
    Huitao Yu, Lianqiang Peng, Can Chen, Mengmeng Qin, Wei Feng. Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction[J]. Nano-Micro Letters, 2024, 16(1): 198 Copy Citation Text show less
    References

    [1] G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

    [2] A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163–174 (2014).

    [3] P. Tao, W. Shang, C. Song, Q. Shen, F. Zhang et al., Bioinspired engineering of thermal materials. Adv. Mater. 27, 428–463 (2015).

    [4] H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53(16), 7161–7170 (2020).

    [5] Z. Xie, Z. Dou, D. Wu, X. Zeng, Y. Feng et al., Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 33, 2370082 (2023).

    [6] W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13, 11561–11571 (2019).

    [7] H. Yu, Y. Feng, C. Chen, H. Zhang, L. Peng et al., Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene. Adv. Sci. 9, e2201331 (2022).

    [8] H. Zhang, Q. He, H. Yu, M. Qin, Y. Feng et al., A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 33, 2211985 (2023).

    [9] S. Bhanushali, P.C. Ghosh, G.P. Simon, W. Cheng, Copper nanowire-filled soft elastomer composites for applications as thermal interface materials. Adv. Mater. Interfaces 4, 1700387 (2017).

    [10] W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8, 2003734 (2021).

    [11] J. Wang, T. Yang, Z. Wang, X. Sun, M. An et al., A thermochromic, viscoelastic nacre-like nanocomposite for the smart thermal management of planar electronics. Nano-Micro Lett. 15, 170 (2023).

    [12] Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31, 2104062 (2021).

    [13] X. Zeng, Y. Yao, Z. Gong, F. Wang, R. Sun et al., Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11, 6205–6213 (2015).

    [14] P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021).

    [15] H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022).

    [16] F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020).

    [17] H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021).

    [18] Y.-H. Zhao, Z.-K. Wu, S.-L. Bai, Study on thermal properties of graphene foam/graphene sheets filled polymer composites. Compos. Part A Appl. Sci. Manuf. 72, 200–206 (2015).

    [19] Z. Wu, C. Xu, C. Ma, Z. Liu, H.-M. Cheng et al., Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 31, e1900199 (2019).

    [20] S. Xu, T. Cheng, Q. Yan, C. Shen, Y. Yu et al., Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv. Sci. 9, e2200737 (2022).

    [21] H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016).

    [22] P. Huang, Y. Li, G. Yang, Z.-X. Li, Y.-Q. Li et al., Graphene film for thermal management: a review. Nano Mater. Sci. 3, 1–16 (2021).

    [23] S. Shaikh, L. Li, K. Lafdi, J. Huie, Thermal conductivity of an aligned carbon nanotube array. Carbon 45, 2608–2613 (2007).

    [24] L. Peng, H. Yu, C. Chen, Q. He, H. Zhang et al., Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates. Adv. Sci. 10, e2205962 (2023).

    [25] E.R. Meshot, A.J. Hart, Abrupt self-termination of vertically aligned carbon nanotube growth. Appl. Phys. Lett. 92, 113107 (2008).

    [26] E. Charon, M. Pinault, M. Mayne-L’Hermite, C. Reynaud, One-step synthesis of highly pure and well-crystallized vertically aligned carbon nanotubes. Carbon 173, 758–768 (2021).

    [27] C. Liu, C. Wu, Y. Zhao, Z. Chen, T.-L. Ren et al., Actively and reversibly controlling thermal conductivity in solid materials. Phys. Rep. 1058, 1–32 (2024).

    [28] A. Beigbeder, M. Linares, M. Devalckenaere, P. Degée, M. Claes et al., CH–π interactions as the driving force for silicone-based nanocomposites with exceptional properties. Adv. Mater. 20, 1003–1007 (2008).

    [29] X. Han, J. Gao, T. Chen, Y. Zhao, Interfacial interaction and steric repulsion in polymer-assisted liquid exfoliation to produce high-quality graphene. Chem. Pap. 74, 757–765 (2020).

    [30] X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024).

    [31] G.A. Slack, Anisotropic thermal conductivity of pyrolytic graphite. Phys. Rev. 127, 694–701 (1962).

    [32] H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29, 1902575 (2019).

    [33] K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63, 1–21 (2018).

    [34] A. Cao, P.L. Dickrell, W.G. Sawyer, M.N. Ghasemi-Nejhad, P.M. Ajayan, Super-compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005).

    [35] S. Pathak, J.R. Raney, C. Daraio, Effect of morphology on the strain recovery of vertically aligned carbon nanotube arrays: an in situ study. Carbon 63, 303–316 (2013).

    [36] Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023).

    [37] W. Dai, X.-J. Ren, Q. Yan, S. Wang, M. Yang et al., Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nano-Micro Lett. 15, 9 (2022).

    Huitao Yu, Lianqiang Peng, Can Chen, Mengmeng Qin, Wei Feng. Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction[J]. Nano-Micro Letters, 2024, 16(1): 198
    Download Citation