• Laser & Optoelectronics Progress
  • Vol. 55, Issue 3, 030001 (2018)
Jiang Li*, Nan Jiang, Lin Ge, and Yu Zhao
Author Affiliations
  • Key Laboratory of Transparent Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.3788/LOP55.030001 Cite this Article Set citation alerts
    Jiang Li, Nan Jiang, Lin Ge, Yu Zhao. Research Development and Future Prospect of Optical Waveguide Laser Ceramics[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030001 Copy Citation Text show less
    References

    [1] Kaminskii A A. Laser crystals and ceramics: recent advances[J]. Laser & Photonics Reviews, 1, 93-177(2010). http://onlinelibrary.wiley.com/doi/10.1002/lpor.200710008/full

    [2] Pan Y B, Li J, Jiang B X[M]. Advanced opto-functional transparent ceramics(2013).

    [3] Gan Q J, Jiang B X, Zhang P D et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 54, 010003(2017).

    [4] Chen J B, Guo S F. Review on technical approaches of high energy solid-state lasers[J]. Chinese Journal of Lasers, 40, 0602006(2013).

    [5] Feng H L, Liu Y S, Han F et al. Progress on development of US naval shipborne laser weapons[J]. Laser & Optoelectronics Progress, 51, 020004(2014).

    [6] Ikesue A, Kinoshita T, Kamata K. et al. Fabrication and optical properties of high-performance polycrystalline Nd∶YAG ceramics for solid-state lasers[J]. Journal of the American Ceramic Society, 78, 1033-1040(1995).

    [7] Heller A[J]. Transparent ceramics spark laser advances Science and Technology Review, 2006, 9-16.

    [8] Li J, Pan Y B, Zeng Y P. et al. The history, development, and future prospects for laser ceramics: a review[J]. International Journal of Refractory Metals and Hard Materials, 39, 44-52(2013). http://www.sciencedirect.com/science/article/pii/S0263436812001849

    [9] Sanghera J, Kim W, Villalobos G. et al. Ceramic laser materials[J]. Materials, 5, 258-277(2012).

    [10] Pan Y B, Xu J, Wu Y S et al. Fabrication and laser output of Nd∶YAG transparent ceramic[J]. Journal of Inorganic Materials, 21, 1278-1280(2006).

    [11] Chen J C, Li J, Xu J L. et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd∶YAG slab laser[J]. Optics & Laser Technology, 63, 50-53(2014). http://www.sciencedirect.com/science/article/pii/S0030399214000607

    [12] Zhang W X, Pan Y B, Zhou J. et al. Diode-pumped Tm∶YAG ceramic laser[J]. Journal of the American Ceramic Society, 92, 2434-2437(2009).

    [13] Zhang W X, Zhou J, Liu W B. et al. Fabrication, properties and laser performance of Ho∶YAG transparent ceramic[J]. Journal of Alloys and Compounds, 506, 745-748(2010). http://www.sciencedirect.com/science/article/pii/S0925838810017597

    [14] Li J, Zhou J, Pan Y B. et al. Solid-state reactive sintering and optical characteristics of transparent Er∶YAG laser ceramics[J]. Journal of the American Ceramic Society, 95, 1029-1032(2012). http://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2011.04915.x/full

    [15] Saikawa J, Sato Y, Taira T. et al. Absorption, emission spectrum properties, and efficient laser performances of Yb∶Y3ScAl4O12 ceramics[J]. Applied Physics Letters, 85, 1898-1900(2004). http://scitation.aip.org/content/aip/journal/apl/85/11/10.1063/1.1791339

    [16] Nakao H, Shirakawa A, Ueda K I. et al. Demonstration of a Yb 3+-doped Lu3Al5O12 ceramic thin-disk laser [J]. Optics Letters, 39, 2884-2887(2014).

    [17] Basiev T T, Doroshenko M E, Konyushkin V A. et al. SrF2∶Nd 3+ laser fluoride ceramics [J]. Optics Letters, 35, 4009-4011(2010). http://www.ncbi.nlm.nih.gov/pubmed/21124595

    [18] Kallel T, Hassairi M A, Dammak M. et al. Spectra and energy levels of Yb 3+, ions in CaF2, transparent ceramics [J]. Journal of Alloys and Compounds, 584, 261-268(2014). http://www.sciencedirect.com/science/article/pii/S0925838813021968

    [19] Bisson J F, Kouznetsov D, Ueda K I. et al. Switching of emissivity and photoconductivity in highly doped Yb 3+∶Y2O3 and Lu2O3 ceramics [J]. Applied Physics Letters, 90, 201901(2007). http://scitation.aip.org/content/aip/journal/apl/90/20/10.1063/1.2739318

    [20] Wang L, Huang H T, Shen D Y. et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 2.7 μm[J]. Optics Express, 22, 19495-19503(2014).

    [21] Snetkov I L, Silin D E, Palashov O V. et al. Study of the thermo-optical constants of Yb doped Y2O3, Lu2O3 and Sc2O3 ceramic materials[J]. Optics Express, 21, 21254-21263(2013).

    [22] Chen W, Shi P, Hua Z W. et al. Semianalytical analysis of thermal effect in LD double-side-pumped rectangular laser crystal[J]. Optics Communications, 282, 3751-3756(2009). http://www.sciencedirect.com/science/article/pii/S0030401809005562

    [23] Hostaša J, Piancastelli A, Toci G. et al. Transparent layered YAG ceramics with structured Yb doping produced via tape casting[J]. Optical Materials, 65, 21-27(2017). http://www.sciencedirect.com/science/article/pii/S0925346716305237

    [24] Li J, Wu Y S, Pan Y B. et al. Laminar-structured YAG/Nd∶YAG/YAG transparent ceramics for solid-state lasers[J]. International Journal of Applied Ceramic Technology, 5, 360-364(2008). http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7402.2008.02244.x/abstract

    [25] Ikesue A, Aung Y L. Synthesis and performance of advanced ceramic lasers[J]. Journal of the American Ceramic Society, 89, 1936-1944(2006). http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThT1

    [26] Taira T. Ceramic YAG lasers[J]. Comptes Rendus Physique, 8, 138-152(2007).

    [27] Konyushkin V A, Nakladov A N, Konyushkin D V. et al. Ceramic planar waveguide structures for amplifiers and lasers[J]. Quantum Electronics, 43, 60-62(2013). http://www.mathnet.ru/php/getFT.phtml?jrnid=qe&paperid=15006&what=fullt&option_lang=eng

    [28] laser systems[J]. Grivas C. Optically pumped planar waveguide lasers: part II: gain media, applications. Progress in Quantum Electronics, 45/46, 3-160(2016).

    [29] Jelínek M. Functional planar thin film optical waveguide lasers[J]. Laser Physics Letters, 9, 91-99(2012). http://onlinelibrary.wiley.com/doi/10.1002/lapl.201110098/pdf

    [30] Mackenzie J I. Dielectric solid-state planar waveguide lasers: a review[J]. IEEE Journal of Selected Topic in Quantum Electronics, 13, 626-637(2007). http://ieeexplore.ieee.org/document/4244437/

    [31] Hu Z Y, Sun W C, Wang Z Y et al. Latest developments of thermally bonded planar waveguide lasers with a double-clad fabric[J]. Laser & Optoelectronics Progress, 41, 21-23(2004).

    [32] Dong M M, Lin G, Zhao Q Z. Progress on femtosecond laser-fabricated waveguide devices in transparent dielectrics[J]. Laser & Optoelectronics Progress, 50, 010002(2013).

    [33] Tan Y. Chen F, de Aldana J R V, et al. Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd∶YVO4 channel waveguides[J]. Applied Physics Letters, 97, 031119(2010).

    [34] Domenech M, Vázquez G V, Cantelar E. et al. Continuous-wave laser action at λ=1064.3 nm in proton-and carbon-implanted Nd∶YAG waveguides[J]. Applied Physics Letters, 83, 4110-4112(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4871013

    [35] Wang Y, Petrov V, Ding Y J. et al. Ultrafast generation of blue light by efficient second-harmonic generation in periodically poled bulk and waveguide potassium titanyl phosphate[J]. Applied Physics Letters, 73, 873-875(1998). http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-1998-CTuD4

    [36] Müller S, Calmano T, Metz P. et al. Femtosecond-laser-written diode-pumped Pr∶LiYF4 waveguide laser[J]. Optics Letters, 37, 5223-5225(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ol-37-24-5223

    [37] Grivas C. May-Smith T C, Shepherd D P, et al. Laser operation of a low loss (0.1 dB/cm) Nd∶Gd3 Ga5O12 thick (40 μm) planar waveguide grown by pulsed laser deposition[J]. Optics Communications, 229, 355-361(2004).

    [38] Grivas C. Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques[J]. Progress in Quantum Electronics, 35, 159-239(2011). http://www.sciencedirect.com/science/article/pii/S0079672711000139

    [39] Sato Y, Akiyama J, Taira T. Effects of rare-earth doping on thermal conductivity in Y3Al5O12, crystals[J]. Optical Materials, 31, 720-724(2009). http://www.sciencedirect.com/science/article/pii/S0925346708002656

    [40] Liu J, Wang J T, Zhou T J et al. Analysis and developments of high-power planar waveguide lasers[J]. High Power Laser and Particle Beams, 27, 79-85(2015).

    [41] Bonner C L, Bhutta T, Shepherd D P. et al. Double-clad structures and proximity coupling for diode-bar-pumped planar waveguide lasers[J]. IEEE Journal of Quantum Electronics, 36, 236-242(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=823470

    [42] Mackenzie J I, Li C, Shepherd D P. et al. Longitudinally diode-pumped Nd∶YAG double-clad planar waveguide laser[J]. Optics Letters, 26, 698-700(2001). http://www.ncbi.nlm.nih.gov/pubmed/18040424

    [43] Filgas D, Rockwell D, Spariosu K. Next-generation lasers for advanced active EO systems[J]. Raytheon Technology Today, 1, 9-13(2008).

    [44] Clatterbuck T, Mordaunt D. Recent results for the Raytheon RELI program[J]. Proc Spie, 8381, 83810W(2012). http://spie.org/x648.xml?product_id=921055

    [45] Wang S L, Fang F Z. High power laser and its development[J]. Laser & Optoelectronics Progress, 54, 090005(2017).

    [46] Li Y, Miller K, Johnson E G. et al. Lasing characteristics of Ho∶YAG single crystal fiber[J]. Optics Express, 24, 9751-9756(2016). http://europepmc.org/abstract/med/27137589

    [47] Harrington J A. Single-crystal fiber optics: a review[J]. SPIE, 8959, 79-86(2014). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2048212

    [48] Chen F, Ma L, Akhmadaliev S. et al. Ion irradiated Er∶YAG ceramic cladding waveguide amplifier in C and L bands[J]. Optical Materials Express, 6, 711-716(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ome-6-3-711

    [49] Salamu G, Jipa F, Zamfirescu M. et al. Laser emission from diode-pumped Nd∶YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique[J]. Optics Express, 22, 5177-5182(2014). http://www.opticsinfobase.org/abstract.cfm?uri=oe-22-5-5177

    [50] Ródenas A, Zhou G, Jaque D. et al. Direct laser writing of three-dimensional photonic structures in Nd∶yttrium aluminum garnet laser ceramics[J]. Applied Physics Letters, 93, 151104(2008). http://scitation.aip.org/content/aip/journal/apl/93/15/10.1063/1.2998258

    [51] Torchia G A, Meilán P F, Rodenas A. et al. Femtosecond laser written surface waveguides fabricated in Nd∶YAG ceramics[J]. Optics Express, 15, 13266-13271(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000006000012000004000001&idtype=cvips&gifs=Yes

    [52] Torchia G A, Rodenas A, Benayas A. et al. Highly efficient laser action in femtosecond-written Nd∶yttrium aluminum garnet ceramic waveguides[J]. Applied Physics Letters, 92, 111103(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4831815

    [53] Rodenas A, Benayas A, Macdonald J R. et al. Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG[J]. Optics Letters, 36, 3395-3397(2011). http://test.europepmc.org/abstract/MED/21886222

    [54] Calmano T, Siebenmorgen J, Paschke A G. et al. Femtosecond-laser written highly doped Yb(15%): YAG ceramic waveguide laser[C]. Advances in Optical Materials, AIThF2(2011).

    [55] Ren Y, Brown G, Ródenas A. et al. Mid-infrared waveguide lasers in rare-earth-doped YAG[J]. Optics Letters, 37, 3339-3341(2012). http://test.europepmc.org/abstract/MED/23381250

    [56] Castillo-Vega G R, Penilla E H, Camacho-López S et al. Waveguide-like structures written in transparent polycrystalline ceramics with an ultra-low fluence femtosecond laser[J]. Optical Materials Express, 2, 1416-1424(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ome-2-10-1416

    [57] Jia Y C. Aldana J R V, Chen F. Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb∶YAG ceramics[J]. Optical Materials Express, 3, 645-650(2013).

    [58] Jia Y C, Akhmadaliev S et al. Femtosecond laser micromachined ridge waveguide lasers in Nd∶YAG ceramics[J]. Optical Materials, 36, 228-231(2013). http://www.sciencedirect.com/science/article/pii/S0925346713004734

    [59] Tan Y, Luan Q F, Liu F Q. et al. Q-switched pulse laser generation from double-cladding Nd∶YAG ceramics waveguides[J]. Optics Express, 21, 18963-18968(2013). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-16-18963

    [60] Li J, Ge L, Zhou Z W et al. Development of solid-state waveguide laser materials[J]. Journal of the Chinese Ceramic Society, 43, 48-59(2015).

    [61] Chen F. Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications[J]. Laser & Photonics Reviews, 6, 622-640(2012). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201100037/full

    [62] Tan Y, Zhang C, Chen F. et al. Room-temperature continuous wave laser oscillations in Nd∶YAG ceramic waveguides produced by carbon ion implantation[J]. Applied Physics B, 103, 837-840(2011). http://link.springer.com/article/10.1007/s00340-010-4260-y

    [63] Tan Y, Luan Q F, Liu F Q. et al. Swift carbon ion irradiated Nd∶YAG ceramic optical waveguide amplifier[J]. Optics Express, 21, 13992-13997(2013). http://www.opticsinfobase.org/abstract.cfm?URI=oe-21-12-13992

    [64] Tan Y, Akhmadaliev S, Zhou S Q. et al. Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd∶YAG ceramic channel waveguide[J]. Optics Express, 22, 3572-3577(2014).

    [65] Yao Y C, Zhang C, Vanga S K. et al. Proton or helium ion beam written channel waveguides in Nd∶YAG ceramics[J]. Optical Materials, 35, 2257-2260(2013). http://www.sciencedirect.com/science/article/pii/S0925346713003029

    [66] Zhang Y. Femtosecond pulsed laser lithography waveguide technology[D]. Beijing: University of Chinese Academy of Sciences(2009).

    [67] Della Valle G, Osellame R, Laporta P. Micromachining of photonic devices by femtosecond laser pulses[J]. Journal of Optics A: Pure and Applied Optics, 11, 13001-13018(2008). http://www.ingentaconnect.com/content/iop/jopta/2009/00000011/00000001/art013001

    [68] Chen F, Aldana J R. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201300025/full

    [69] Liu H L. Jia Y C, de Aldana J R V, et al. Femtosecond laser inscribed cladding waveguides in Nd∶YAG ceramics: fabrication, fluorescence imaging and laser performance[J]. Optics Express, 20, 18620-18629(2012).

    [70] Calmano T, Paschke A G, Siebenmorgen J. et al. Characterization of an Yb∶YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique[J]. Applied Physics B: Lasers & Optics, 103, 1-4(2011). http://link.springer.com/article/10.1007/s00340-011-4485-4

    [71] Salamu G, Jipa F, Zamfirescu M. et al. Cladding waveguides realized in Nd∶YAG ceramic by direct femtosecond-laser writing with a helical movement technique[J]. Optical Materials Express, 4, 790-797(2014).

    [72] Salamu G, Jipa F, Zamfirescu M. et al. Watt-level output power operation from diode-laser pumped circular buried depressed-cladding waveguides inscribed in Nd∶YAG by direct femtosecond-laser writing[J]. IEEE Photonics Journal, 8, 1-9(2016). http://ieeexplore.ieee.org/document/7365419/

    [73] Ter-Gabrielyan N, Fromzel V, Mu X. et al. High efficiency, resonantly diode pumped, double-clad, Er∶YAG-core, waveguide laser[J]. Optics Express, 20, 25554-25561(2012). http://www.ncbi.nlm.nih.gov/pubmed/23187373

    [74] Ng S P, Mackenzie J I. Power and radiance scaling of a 946 nm Nd∶YAG planar waveguide laser[J]. Laser Physics, 22, 494-498(2012). http://link.springer.com/article/10.1134/S1054660X12030140

    [75] Howatt G N, Breckenridge R G, Brownlow J M. Fabrication of thin ceramic sheets for capacitors[J]. Journal of the American Ceramic Society, 30, 237-242(2006). http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1947.tb18889.x/pdf

    [76] Yang K W, Ba X W, Li J. et al. Multilayer YAG/Yb∶YAG composite ceramic laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 168-172(2014). http://ieeexplore.ieee.org/document/6939643/

    [77] Wang C, Li W X, Bai D B. et al. Mode-locked composite YAG/Yb∶YAG ceramic laser and high-power amplification[J]. IEEE Photonics Technology Letters, 28, 433-436(2016). http://ieeexplore.ieee.org/document/7320996/

    [78] Tang F, Cao Y G, Huang J Q. et al. Multilayer YAG/Re∶YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method[J]. Journal of the European Ceramic Society, 32, 3995-4002(2012). http://www.sciencedirect.com/science/article/pii/S0955221912003822

    [79] Ba X W. Transparent laser ceramics with multi-layers composite structures[D]. Beijing: University of Chinese Academy of Sciences(2013).

    [80] Tang F, Cao Y G, Huang J Q. et al. Fabrication and laser behavior of composite Yb∶YAG ceramic[J]. Journal of the American Ceramic Society, 95, 56-69(2012).

    [81] Ma C Y, Tang F, Zhu J F. et al. Cation diffusion at the interface of composite YAG/Re∶LuAG (Re=Nd or Yb) transparent ceramics[J]. Journal of the European Ceramic Society, 36, 2555-2564(2016). http://www.sciencedirect.com/science/article/pii/S0955221916301571

    [82] Tang F, Cao Y G, Huang J Q. et al. Diode-pumped multilayer Yb∶YAG composite ceramic laser[J]. Laser Physics Letters, 9, 564-569(2012).

    [83] Ge L. Fabrication, microstructure and properties of the planar waveguide and the gradient doping laser ceramics[D]. Beijing: University of Chinese Academy of Sciences(2015).

    [84] Ge L, Li J, Zhou Z W. et al. Fabrication of composite YAG/Nd∶YAG/YAG transparent ceramics for planar waveguide laser[J]. Optical Materials Express, 4, 1042-1049(2014). http://www.opticsinfobase.org/abstract.cfm?uri=ome-4-5-1042

    [85] Ge L, Li J, Qu H Y. et al. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd∶YAG/YAG ceramics[J]. Optical Materials, 60, 221-229(2016). http://www.sciencedirect.com/science/article/pii/S0925346716303925

    [86] Liu J, Ge L, Feng L W. et al. Diode-pumped composite ceramic Nd∶YAG planar waveguide amplifier with 327 mJ output at 100 Hz repetition rate[J]. Chinese Optics Letters, 14, 61-65(2016). http://www.cqvip.com/QK/85954X/201605/669038606.html

    [87] Rao H, Liu Z J, Cong Z H. et al. High power YAG/Nd∶YAG/YAG ceramic planar waveguide laser[J]. Laser Physics Letters, 14, 045801(2017). http://adsabs.harvard.edu/abs/2017LaPhL..14d5801R

    [88] Ma C Y, Tang F, Lin H F. et al. Fabrication and planar waveguide laser behavior of YAG/Nd∶YAG/YAG composite ceramics by tape casting[J]. Journal of Alloys and Compounds, 640, 317-320(2015). http://www.sciencedirect.com/science/article/pii/S0925838815009949

    [89] Lin H F, Tang F, Chen W D. et al. Diode-pumped tape casting planar waveguide YAG/Nd∶YAG/YAG ceramic laser[J]. Optics Express, 23, 8104-8112(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-6-8104

    [90] Wu Y S, Li J, Pan Y B. et al. Diode-pumped Yb∶YAG ceramic laser[J]. Journal of the American Ceramic Society, 90, 3334-3337(2010).

    [91] Zhao Y, Liu Q, Ge L. et al. Tape casting fabrication and properties of planar waveguide YAG/Yb∶YAG/YAG transparent ceramics[J]. Optical Materials, 69, 169-174(2017). http://adsabs.harvard.edu/abs/2017OptMa..69..169Z

    [92] Wang C, Li W X, Yang C. et al. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG[J]. Scientific Reports, 6, 31289(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4989161/

    [93] Liu Q, Zhao Y, Ge L et al. Fabrication and ion diffusion behavior of planar waveguide YAG/Yb∶YAG/YAG transparent ceramics[J]. Journal of the Chinese Ceramic Society, 45, 749-755(2017).

    [94] Lin S, Wu W L, Zhan Z L et al. Evaluation of bonding interface on different types of dentin after Er∶YAG laser irradiation[J]. Chinese Journal of Lasers, 38, 0304001(2011).

    [95] Zhu J, Shi H M, Zhang M Y et al. The clinical application of Ho∶YAG laser in various department[J]. Applied Laser, 23, 109-116(2003).

    [96] Yao B Q, Li X L, Dai T Y. et al. Diode-pumped tape casting planar waveguide YAG/Tm∶YAG/YAG ceramic laser at 2013.76 nm[J]. Optics Letters, 41, 254-256(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ol-41-2-254

    [97] Wu J, Ju L, Yao B Q. et al. Tunable single-longitudinal-mode operation of a sandwich-type YAG/Ho∶YAG/YAG ceramic laser[J]. Infrared Physics & Technology, 78, 40-44(2016). http://www.sciencedirect.com/science/article/pii/S1350449516302535

    [98] Ma C Y, Zhu J F, Liu K. et al. Longitudinally diode-pumped planar waveguide YAG/Yb∶LuAG/YAG ceramic laser at 1030.7 nm[J]. Optics Letters, 41, 3317-3319(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ol-41-14-3317

    [99] Ikesue A, Aung Y L, Okamoto T. et al. Development of free designable ceramic fiber lasers[C]. Conference on Lasers and Electro-Optics, CTuEE3(2006).

    [100] Ikesue A, Aung Y L. Progress in ceramic Nd∶YAG laser[J]. SPIE, 6552, 655209(2007). http://spie.org/Publications/Proceedings/Paper/10.1117/12.718997

    [101] Kim H J, Fair G, Lee H D. et al. Processing and transparency of polycrystalline yttrium aluminum garnet (YAG) fibers for optical applications[C]. SPIE, 7912, 79121T(2011).

    [102] Kim H J, Fair G E, Hart A M. et al. Development of polycrystalline yttrium aluminum garnet (YAG) fibers[J]. Journal of the European Ceramic Society, 35, 4251-4258(2015). http://www.sciencedirect.com/science/article/pii/S0955221915300595

    [103] Fair G E, Hay R, Lee H D. et al. Towards optical quality yttrium aluminum garnet (YAG) fibers: recent efforts at AFRL/RX[C]. SPIE, 7686, 76860E(2010).

    [104] Fair G E, Kim H J, Lee H D. et al. Development of ceramic fibers for high-energy laser applications[C]. SPIE, 8039, 80390X(2011).

    [105] Kim H J, Fair G E, Hart A M. et al. Influence of processing variables on the properties of polycrystalline YAG fibers[C]. SPIE, 8381, 838111(2012).

    [106] Kim H, Hay R. McDaniel S A, et al. Lasing of surface-polished polycrystalline Ho∶YAG (yttrium aluminum garnet) fiber[J]. Optics Express, 25, 6725-6731(2017).