• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2211001 (2022)
Fengyuan Shi1,2, Chunming Zhang3,*, Lihui Jiang1,2, Qi Zhou1,2, and Di Pan1,2
Author Affiliations
  • 1Shanghai Institute of Aerospace Control Technology, Shanghai 201109, China
  • 2Shanghai Key Laboratory of Space Intelligent Control Technology, Shanghai 201109, China
  • 3Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
  • show less
    DOI: 10.3788/LOP202259.2211001 Cite this Article Set citation alerts
    Fengyuan Shi, Chunming Zhang, Lihui Jiang, Qi Zhou, Di Pan. Optimization and Verification of Iterative Closest Point Algorithm Using Principal Component Analysis[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2211001 Copy Citation Text show less
    Schematic diagram of principal component analysis (PCA) in case of two-dimensional input
    Fig. 1. Schematic diagram of principal component analysis (PCA) in case of two-dimensional input
    Simulation result graph of ICP algorithm
    Fig. 2. Simulation result graph of ICP algorithm
    Flow chart of PCA improved algorithm
    Fig. 3. Flow chart of PCA improved algorithm
    Initial posture of point cloud. (a) Query point cloud; (b) reference point cloud; (c) relative position relationship between reference point cloud (lower left quarter) and query point cloud (upper right corner)
    Fig. 4. Initial posture of point cloud. (a) Query point cloud; (b) reference point cloud; (c) relative position relationship between reference point cloud (lower left quarter) and query point cloud (upper right corner)
    Simulation result graph of ICP algorithm. (a) Iteration error; (b) registration error; (c) registration result
    Fig. 5. Simulation result graph of ICP algorithm. (a) Iteration error; (b) registration error; (c) registration result
    Decentralized point cloud image. (a) Rough initial value; (b) accurate initial value
    Fig. 6. Decentralized point cloud image. (a) Rough initial value; (b) accurate initial value
    Rough initial pose registration result map. (a) Iteration error; (b) registration error; (c) registration result
    Fig. 7. Rough initial pose registration result map. (a) Iteration error; (b) registration error; (c) registration result
    Accurate initial pose registration result map. (a) Iteration error; (b) registration error; (c) registration result
    Fig. 8. Accurate initial pose registration result map. (a) Iteration error; (b) registration error; (c) registration result
    Top three principal components of point cloud. (a) Reference point cloud; (b) query point cloud
    Fig. 9. Top three principal components of point cloud. (a) Reference point cloud; (b) query point cloud
    PCA preprocessing registration results. (a) Iteration error; (b) registration error; (c) registration result
    Fig. 10. PCA preprocessing registration results. (a) Iteration error; (b) registration error; (c) registration result
    PCA iterative registration results. (a) Iteration error; (b) registration error; (c) registration result
    Fig. 11. PCA iterative registration results. (a) Iteration error; (b) registration error; (c) registration result
    PCA iteration+rough initial value registration result. (a) Iteration error; (b) registration error; (c) registration result
    Fig. 12. PCA iteration+rough initial value registration result. (a) Iteration error; (b) registration error; (c) registration result
    PCA iteration+accurate initial value registration result. (a) Iteration error; (b) registration error; (c) registration result
    Fig. 13. PCA iteration+accurate initial value registration result. (a) Iteration error; (b) registration error; (c) registration result
    ICP algorithm

    Input:

    qQ:Model point

    pP:Query point

    R0:Initial rotation matrix

    t0:Initial translation matrix

    Output:

    R:Rotation matrix

    t:Translation matrix

    1)Ptem=Reproject(P,R0t0)

    2)foriter is 1tomax_ iterdo

    3)[Ptem]=SearchNN(Q)

    4)[Rt]=EstimateTrans(Ptem,Q,Rtemttem)

    5)P'=Reproject(Ptem,Rt)

    6)end for

    7)return Rt

    Table 1. Calculation process of ICP algorithm
    Time /sIteration timesRegistration errorIteration errorRegistration result
    ICP179.2626971008.28230.8717Fail
    ICP+rough179.74361910010.16980.1089Fail
    ICP+accurate176.65423810024.55950.1531Fail
    PCA175.89740210025.83400.3129Fail
    PCA iteration169.420848946.68570.0001008Succeed
    PCA iteration+rough52.328031293.64890.0009937Succeed
    PCA iteration+accurate19.427939102.19320.0001471Succeed
    Table 2. PCA iterative simulation results
    Fengyuan Shi, Chunming Zhang, Lihui Jiang, Qi Zhou, Di Pan. Optimization and Verification of Iterative Closest Point Algorithm Using Principal Component Analysis[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2211001
    Download Citation