[1] Nunes A N, de Almeida A C, Coelho C O A. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal[J]. Applied Geography, 31, 687-699(2011).
[2] Li L, Wen Q, Wang B et al. Water body extraction from high-resolution remote sensing images based on scaling EfficientNets[J]. Journal of Physics: Conference Series, 1894, 012100(2021).
[3] Zhang Y. Fine classification of crops using satellite hyperspectral remote sensing imagery[D](2021).
[4] Shi W X, Bao J H, Yao Y. Remote sensing image target detection and identification based on deep learning[J]. Journal of Computer Applications, 40, 3558-3562(2020).
[5] Liu H Y, Jiang Z H, Dai J Y et al. Rock crevices determine woody and herbaceous plant cover in the Karst critical zone[J]. Scientia Sinica (Terrae), 49, 1974-1981(2019).
[6] Han L G. Research on winter wheat planting area extraction method based on GF-1 image[D](2019).
[7] Yang S. Study on the classification and spatial and temporal changes of main tree species in the greater Xing’an mountains based on Landsat data[D](2020).
[8] Shi F F, Gao X H, Yang L Y et al. Research on typical crop classification based on HJ-1A hyperspectral data in the Huangshui River Basin[J]. Remote Sensing Technology and Application, 32, 206-217(2017).
[9] Nan Y F, Zhang Y L, Zhu R. Cooperative spectrum sensing algorithm based on kernel space optimization support vector machine[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 54, 8-14(2021).
[10] Xing X Y, Yang X C, Xu B et al. Remote sensing estimation of grassland aboveground biomass based on random forest[J]. Journal of Geo-Information Science, 23, 1312-1324(2021).
[11] Gu X T, Gao X H, Ma H J et al. Comparison of machine learning methods for land use/land cover classification in the complicated terrain regions[J]. Remote Sensing Technology and Application, 34, 57-67(2019).
[12] Liu Y, Yang K. Credit fraud detection for extremely imbalanced data based on ensembled deep learning[J]. Journal of Computer Research and Development, 58, 539-547(2021).
[13] Ozdarici-Ok A, Ok A, Schindler K. Mapping of agricultural crops from single high-resolution multispectral images: data-driven smoothing vs. parcel-based smoothing[J]. Remote Sensing, 7, 5611-5638(2015).
[14] Kang C, Li W X, Huang S et al. Research on active optical correction algorithm based on deep learning[J]. Acta Optica Sinica, 41, 0611004(2021).
[15] Zhuang Q S, He Z W, Zhang C X et al. Polarization recognition through scattering media based on deep-learning[J]. Acta Optica Sinica, 41, 2229001(2021).
[16] Zhang L, Xu X B, Cao C F et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination[J]. Chinese Journal of Lasers, 49, 0610001(2022).
[17] Huang H S, Lan Y B, Deng J Z et al. A semantic labeling approach for accurate weed mapping of high resolution UAV imagery[J]. Sensors, 18, 2113(2018).
[18] Yang M D, Tseng H H, Hsu Y C et al. Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date UAV visible images[J]. Remote Sensing, 12, 633(2020).
[19] Ma H Y, Zhang T Y, Dai Q L et al. Extracting urban vegetation from high-resolution remote sensing image based on I-FCN model[J]. Journal of Southwest Forestry University (Natural Sciences), 39, 117-123(2019).
[20] Alhassan V, Henry C, Ramanna S et al. A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery[J]. Neural Computing and Applications, 32, 8529-8544(2020).
[21] Lin J H, Chen Y Z, Wang X Q. Road greening level evaluation of Gulou district in Fuzhou based on visible green index[J]. Journal of Chinese Urban Forestry, 19, 73-77, 84(2021).
[22] Gui Y Y, Li W, Wang Y N et al. Woodland detection using most-sure strategy to fuse segmentation results of deep learning[C], 6724-6727(2019).
[23] Morales G, Kemper G, Sevillano G et al. Automatic segmentation of Mauritia flexuosa in unmanned aerial vehicle (UAV) imagery using deep learning[J]. Forests, 9, 736(2018).
[24] Zhu Q H. ACDNet with ASPP for camouflaged object detection[J]. Journal of Physics: Conference Series, 1982, 012082(2021).
[25] Yao X D, Yang H, Wu Y L et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features[J]. Sensors, 19, 2792(2019).
[27] Sun K, Xiao B, Liu D et al. Deep high-resolution representation learning for human pose estimation[C](2019).
[28] Chen L C, Zhu Y K, Papandreou G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11211, 833-851(2018).
[29] Wu Y X, He K M. Group normalization[J]. International Journal of Computer Vision, 128, 742-755(2020).