Qinfeng Yao, Yongxiang Ning, Sunwen Du. Change Detection of Optical and Synthetic Aperture Radar Remote Sensing Images Based on a Domain Adaptive Neural Network[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1828001

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 61, Issue 18, 1828001 (2024)

Fig. 1. Overall architecture of proposed method

Fig. 2. Dual attention mechanism of spatial channel. (a) Convolution block attention module; (b) spatial access attention module; (c) spatial attention module; (d) channel attention module

Fig. 3. Dataset 1. (a) Landsat-8 optical image; (b) Sentinel-1A SAR image; (c) ground truth

Fig. 4. Dataset 2. (a) QuickBird-2 optical image; (b) TerraSAR-X StripMap HH SAR image; (c) ground truth

Fig. 5. Dataset 3. (a) Sentinel-2 optical image; (b) COSMO-SkyMed SAR image; (c) ground truth

Fig. 6. Change detection results of dataset 1. (a) Optical image; (b) SAR image;(c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth

Fig. 7. Change detection results of dataset 2. (a) Optical image; (b)SAR image; (c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth

Fig. 8. Change detection results of dataset 3. (a) Optical images; (b) SAR image;(c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
|
Table 1. Quantitative evaluation results for dataset 1
|
Table 2. Quantitative evaluation results for dataset 2
|
Table 3. Quantitative evaluation results for dataset 3
|
Table 4. Comparison of training time and prediction time

Set citation alerts for the article
Please enter your email address