• Laser & Optoelectronics Progress
  • Vol. 61, Issue 18, 1828001 (2024)
Qinfeng Yao1,*, Yongxiang Ning1, and Sunwen Du2
Author Affiliations
  • 1Department of Earth Science and Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, Shanxi, China
  • 2School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • show less
    DOI: 10.3788/LOP232565 Cite this Article Set citation alerts
    Qinfeng Yao, Yongxiang Ning, Sunwen Du. Change Detection of Optical and Synthetic Aperture Radar Remote Sensing Images Based on a Domain Adaptive Neural Network[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1828001 Copy Citation Text show less
    Overall architecture of proposed method
    Fig. 1. Overall architecture of proposed method
    Dual attention mechanism of spatial channel. (a) Convolution block attention module; (b) spatial access attention module; (c) spatial attention module; (d) channel attention module
    Fig. 2. Dual attention mechanism of spatial channel. (a) Convolution block attention module; (b) spatial access attention module; (c) spatial attention module; (d) channel attention module
    Dataset 1. (a) Landsat-8 optical image; (b) Sentinel-1A SAR image; (c) ground truth
    Fig. 3. Dataset 1. (a) Landsat-8 optical image; (b) Sentinel-1A SAR image; (c) ground truth
    Dataset 2. (a) QuickBird-2 optical image; (b) TerraSAR-X StripMap HH SAR image; (c) ground truth
    Fig. 4. Dataset 2. (a) QuickBird-2 optical image; (b) TerraSAR-X StripMap HH SAR image; (c) ground truth
    Dataset 3. (a) Sentinel-2 optical image; (b) COSMO-SkyMed SAR image; (c) ground truth
    Fig. 5. Dataset 3. (a) Sentinel-2 optical image; (b) COSMO-SkyMed SAR image; (c) ground truth
    Change detection results of dataset 1. (a) Optical image; (b) SAR image;(c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    Fig. 6. Change detection results of dataset 1. (a) Optical image; (b) SAR image;(c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    Change detection results of dataset 2. (a) Optical image; (b)SAR image; (c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    Fig. 7. Change detection results of dataset 2. (a) Optical image; (b)SAR image; (c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    Change detection results of dataset 3. (a) Optical images; (b) SAR image;(c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    Fig. 8. Change detection results of dataset 3. (a) Optical images; (b) SAR image;(c) DCCN; (d) DHFF; (e) EECD; (f) FCSN; (g) DTCDN; (h) MSCD; (i) proposed method; (j) ground truth
    MethodRprecisionRrecallRmIOUsF1
    DCCN49.9249.6938.8446.31
    DHFF55.7573.4544.4154.50
    EECD73.1681.9266.8976.68
    FCSN77.2180.0268.6478.26
    DTCDN80.2982.0671.2880.67
    MSCD79.8984.2272.2581.54
    Proposed method78.8985.3872.7482.17
    Table 1. Quantitative evaluation results for dataset 1
    MethodRprecisionRrecallRmIOUsF1
    DCCN47.1343.9138.9845.02
    DHFF52.9458.1741.3751.18
    EECD89.0891.0182.3589.52
    FCSN91.9994.5487.1792.75
    DTCDN88.8395.1785.3291.57
    MSCD91.6093.3186.2492.17
    Proposed method92.0495.8888.8893.86
    Table 2. Quantitative evaluation results for dataset 2
    MethodRprecisionRrecallRmIOUsF1
    DCCN50.1450.1140.5750.01
    DHFF48.2147.0736.5347.62
    EECD61.656.5948.6557.71
    FCSN61.5958.2448.8557.74
    DTCDN67.4265.3654.9266.29
    MSCD68.6774.2457.4370.01
    Proposed method71.5171.9159.9171.71
    Table 3. Quantitative evaluation results for dataset 3
    MethodTraining timePrediction time
    EECD5.980.065
    FCSN7.120.037
    DTCDN266.150.218
    MSCD35.820.061
    Proposed method26.190.058
    Table 4. Comparison of training time and prediction time
    Qinfeng Yao, Yongxiang Ning, Sunwen Du. Change Detection of Optical and Synthetic Aperture Radar Remote Sensing Images Based on a Domain Adaptive Neural Network[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1828001
    Download Citation