• Laser & Optoelectronics Progress
  • Vol. 61, Issue 18, 1828001 (2024)
Qinfeng Yao1,*, Yongxiang Ning1, and Sunwen Du2
Author Affiliations
  • 1Department of Earth Science and Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, Shanxi, China
  • 2School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • show less
    DOI: 10.3788/LOP232565 Cite this Article Set citation alerts
    Qinfeng Yao, Yongxiang Ning, Sunwen Du. Change Detection of Optical and Synthetic Aperture Radar Remote Sensing Images Based on a Domain Adaptive Neural Network[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1828001 Copy Citation Text show less
    References

    [1] Gao H, Yan X D, Zhang H et al. Multi-scale sea-land segmentation method for remote sensing images based on Res2Net[J]. Acta Optica Sinica, 42, 1828004(2022).

    [2] Ren Q R, Yang W Z, Wang C J et al. Review of remote sensing image change detection[J]. Journal of Computer Applications, 41, 2294-2305(2021).

    [3] Niu Z Y, Gao O Y, Liu W et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 44, 133-144(2023).

    [4] Jiang X, Li G, Liu Y et al. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1551-1566(2020).

    [5] Gong X, Chen Z L, Wu L et al. Transfer learning based mixture of experts classification model for high-resolution remote sensing scene classification[J]. Acta Optica Sinica, 41, 2301003(2021).

    [6] Liu J M, Yang S, Huang H. Hyperspectral remote sensing image classification based on local reconstruction Fisher analysis[J]. Chinese Journal of Lasers, 47, 0710001(2020).

    [7] Zhang Y H, Zhang F, He Z F et al. Remote sensing image segmentation based on attention guidance and multi-feature fusion[J]. Acta Optica Sinica, 43, 2428010(2023).

    [8] Mignotte M. A fractal projection and Markovian segmentation-based approach for multimodal change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 8046-8058(2020).

    [9] Feng Q L, Chen B A, Li G Q et al. A review for sample datasets of remote sensing imagery[J]. National Remote Sensing Bulletin, 26, 589-605(2022).

    [10] Fan J, Jia F W, Wu C D. Remote sensing images change detection based on secondary clustering[J]. Laser Journal, 44, 49-53(2023).

    [11] Zhang C X, Yue P, Tapete D et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 183-200(2020).

    [12] de Giorgi A, Solarna D, Moser G et al. Monitoring the recovery after 2016 hurricane Matthew in Haiti via Markovian multitemporal region-based modeling[J]. Remote Sensing, 13, 3509-3513(2021).

    [13] Saha S, Bovolo F, Bruzzone L. Building change detection in VHR SAR images via unsupervised deep transcoding[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 1917-1929(2021).

    [14] Gao P X. Change detection of remote sensing images based on variable weight Markov random field[J]. Computer Applications and Software, 38, 208-212, 262(2021).

    [15] Ni L B, Lu H Y, Lu T J et al. Remote sensing image change detection based on twin residual neural network[J]. Computer Engineering and Design, 41, 3451-3457(2020).

    [16] Wang C H, Li E Z, Xiao M. Multi-feature fusion and twin attention networks for high resolution Remote sensing image object detection[J]. Journal of Jilin University (Engineering and Technology Edition), 54, 240-250(2024).

    [17] Zhang P D, Han Y B, Guan L. Bayesian classifier with pseudo-siamese network for SAR ship target detection[J]. China Sciencepaper, 17, 1296-1302(2022).

    [18] Liu J, Gong M G, Qin K et al. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[J]. IEEE Transactions on Neural Networks and Learning Systems, 29, 545-559(2018).

    [19] Agersborg J A, Luppino L T, Anfinsen S N et al. Toward targeted change detection with heterogeneous remote sensing images for forest mortality mapping[J]. Canadian Journal of Remote Sensing, 48, 826-848(2022).

    [20] Caye Daudt R, Le Saux B, Boulch A. Fully convolutional Siamese networks for change detection[C], 4063-4067(2018).

    [21] Saha S, Bovolo F, Bruzzone L. Building change detection in VHR SAR images via unsupervised deep transcoding[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 1917-1929(2021).

    [22] Li X H, Du Z S, Huang Y Y et al. A deep translation (GAN) based change detection network for optical and SAR remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 179, 14-34(2021).

    [23] Long J, Li M, Wang X et al. Semantic change detection using a hierarchical semantic graph interaction network from high-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 211, 318-335(2023).

    Qinfeng Yao, Yongxiang Ning, Sunwen Du. Change Detection of Optical and Synthetic Aperture Radar Remote Sensing Images Based on a Domain Adaptive Neural Network[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1828001
    Download Citation