[1] Kandel E R, Spencer W A, Brinley F J. Jr. Electrophysiology of hippocampal neurons: I. sequential invasion and synaptic organization[J]. Journal of Neurophysiology, 24, 225-242(1961).
[2] Ditterich J, Mazurek M E, Shadlen M N. Microstimulation of visual cortex affects the speed of perceptual decisions[J]. Nature Neuroscience, 6, 891-898(2003).
[3] Salzman C D, Britten K H, Newsome W T. Cortical microstimulation influences perceptual judgements of motion direction[J]. Nature, 346, 174-177(1990).
[4] Li Z L, Li S W, Zhang S L et al. Coherent Raman scattering microscopy technique and its biomedical applications[J]. Chinese Journal of Lasers, 47, 0207005(2020).
[5] Sancataldo G, Silvestri L, Mascaro A L A et al. Advanced fluorescence microscopy for in vivo imaging of neuronal activity[J]. Optica, 6, 758-765(2019).
[6] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).
[7] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).
[8] Jacques S L. Optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 58, R37-R61(2013).
[9] Mattis J, Tye K M, Ferenczi E A et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins[J]. Nature Methods, 9, 159-172(2011).
[13] Oron D, Papagiakoumou E, Anselmi F et al. Two-photon optogenetics[J]. Progress in Brain Research, 196, 119-143(2012).
[14] Papagiakoumou E, Ronzitti E, Chen I W et al. Two-photon optogenetics by computer-generated holography[M]. //Stroh A. Optogenetics: a roadmap. Neuromethods, 133, 175-197(2018).
[15] Huang P Y, Song Y T, Zhang N et al. Optogenetics based on light-gated protein-protein interactions and its applications[J]. Chinese Journal of Lasers, 47, 0207010(2020).
[16] Nagel G, Brauner M, Liewald J F et al. Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses[J]. Current Biology, 15, 2279-2284(2005).
[17] Gradinaru V, Thompson K R, Zhang F et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo[J]. The Journal of Neuroscience, 27, 14231-14238(2007).
[18] Gunaydin L A, Yizhar O, Berndt A et al. Ultrafast optogenetic control[J]. Nature Neuroscience, 13, 387-392(2010).
[19] Berndt A, Schoenenberger P, Mattis J et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels[J]. Proceedings of the National Academy of Sciences, 108, 7595-7600(2011).
[20] Yizhar O, Fenno L E, Prigge M et al. Neocortical excitation/inhibition balance in information processing and social dysfunction[J]. Nature, 477, 171-178(2011).
[21] Carmi I, de Battista M, Maddalena L et al. Holographic two-photon activation for synthetic optogenetics[J]. Nature Protocols, 14, 864-900(2019).
[22] Zhang F, Wang L P, Brauner M et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 446, 633-639(2007).
[23] Chow B Y, Han X, Dobry A S et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps[J]. Nature, 463, 98-102(2010).
[24] Airan R D, Thompson K R, Fenno L E et al. Temporally precise in vivo control of intracellular signalling[J]. Nature, 458, 1025-1029(2009).
[25] Zhang F, Gradinaru V, Adamantidis A R et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures[J]. Nature Protocols, 5, 439-456(2010).
[26] Adamantidis A R, Zhang F, Aravanis A M et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons[J]. Nature, 450, 420-424(2007).
[27] Aravanis A M, Wang L P, Zhang F et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J]. Journal of Neural Engineering, 4, S143-S156(2007).
[28] Ciocchi S, Herry C, Grenier F et al. Encoding of conditioned fear in central amygdala inhibitory circuits[J]. Nature, 468, 277-282(2010).
[29] Witten I B, Lin S C, Brodsky M et al. Cholinergic interneurons control local circuit activity and cocaine conditioning[J]. Science (New York, N.Y.), 330, 1677-1681(2010).
[30] Domingos A I, Vaynshteyn J, Voss H U et al. Leptin regulates the reward value of nutrient[J]. Nature Neuroscience, 14, 1562-1568(2011).
[31] Cardin J A, Carlén M, Meletis K et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses[J]. Nature, 459, 663-667(2009).
[32] Sohal V S, Zhang F, Yizhar O et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance[J]. Nature, 459, 698-702(2009).
[33] Adesnik H, Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits[J]. Nature, 464, 1155-1160(2010).
[34] Kravitz A V, Freeze B S, Parker P R et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry[J]. Nature, 466, 622-626(2010).
[35] Gradinaru V, Mogri M, Thompson K R et al. Optical deconstruction of parkinsonian neural circuitry[J]. Science, 324, 354-359(2009).
[36] Bi A D, Cui J J, Ma Y P et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration[J]. Neuron, 50, 23-33(2006).
[37] Lagali P S, Balya D, Awatramani G B et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration[J]. Nature Neuroscience, 11, 667-675(2008).
[39] O’Connor D H, Huber D, Svoboda K. Reverse engineering the mouse brain[J]. Nature, 461, 923-929(2009).
[40] Curtis J C, Kleinfeld D. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system[J]. Nature Neuroscience, 12, 492-501(2009).
[41] Rickgauer J P, Tank D W. Two-photon excitation of channelrhodopsin-2 at saturation[J]. Proceedings of the National Academy of Sciences, 106, 15025-15030(2009).
[42] Papagiakoumou E, Anselmi F, Bègue A et al. Scanless two-photon excitation of channelrhodopsin-2[J]. Nature Methods, 7, 848-854(2010).
[43] Papagiakoumou E, Ronzitti E, Emiliani V. Scanless two-photon excitation with temporal focusing[J]. Nature Methods, 17, 571-581(2020).
[44] Durst M E, Zhu G, Xu C. Simultaneous spatial and temporal focusing in nonlinear microscopy[J]. Optics Communications, 281, 1796-1805(2008).
[46] Glückstad J, Mogensen P C. Optimal phase contrast in common-path interferometry[J]. Applied Optics, 40, 268-282(2001).
[47] Oron D, Papagiakoumou E, Anselmi F et al. Two-photon optogenetics[J]. Progress in Brain Research, 196, 119-143(2012).
[48] Leseberg D. Computer-generated three-dimensional image holograms[J]. Applied Optics, 31, 223-229(1992).
[49] Shimobaba T, Ito T, Masuda N et al. Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL[J]. Optics Express, 18, 9955-9960(2010).
[50] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).
[51] Pasienski M, DeMarco B. A high-accuracy algorithm for designing arbitrary holographic atom traps[J]. Optics Express, 16, 2176-2190(2008).
[52] Makowski M, Sypek M, Kolodziejczyk A et al. Iterative design of multiplane holograms: experiments and applications[J]. Optical Engineering, 46, 045802(2007).
[53] Pozzi P, Mapelli J. Real time generation of three dimensional patterns for multiphoton stimulation[J]. Frontiers in Cellular Neuroscience, 15, 609505(2021).
[54] Zhang J Z, Pégard N, Zhong J S et al. 3D computer-generated holography by non-convex optimization[J]. Optica, 4, 1306-1313(2017).
[55] Eybposh M H, Caira N W, Atisa M et al. DeepCGH: 3D computer-generated holography using deep learning[J]. Optics Express, 28, 26636-26650(2020).
[56] Yang W J, Carrillo-Reid L, Bando Y et al. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions[J]. eLife, 7, e32671(2018).
[57] dal Maschio M, Difato F, Beltramo R et al. Simultaneous two-photon imaging and photo-stimulation with structured light illumination[J]. Optics Express, 18, 18720-18731(2010).
[58] Papagiakoumou E, de Sars V, Oron D et al. Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses[J]. Optics Express, 16, 22039-22047(2008).
[59] Hernandez O, Papagiakoumou E, Tanese D et al. Three-dimensional spatiotemporal focusing of holographic patterns[J]. Nature Communications, 7, 11928(2016).
[60] Pégard N C, Mardinly A R, Oldenburg I A et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT)[J]. Nature Communications, 8, 1228(2017).
[61] Accanto N, Molinier C, Tanese D et al. Multiplexed temporally focused light shaping for high-resolution multi-cell targeting[J]. Optica, 5, 1478-1491(2018).
[62] Lutz C, Otis T S, DeSars V et al. Holographic photolysis of caged neurotransmitters[J]. Nature Methods, 5, 821-827(2008).
[63] Takaki Y, Yokouchi M. Speckle-free and grayscale hologram reconstruction using time-multiplexing technique[J]. Optics Express, 19, 7567-7579(2011).
[64] Golan L, Shoham S. Speckle elimination using shift-averaging in high-rate holographic projection[J]. Optics Express, 17, 1330-1339(2009).
[65] Guillon M, Forget B C, Foust A J et al. Vortex-free phase profiles for uniform patterning with computer-generated holography[J]. Optics Express, 25, 12640-12652(2017).
[66] Zhou W J, Zou S, He D K et al. Speckle noise reduction of holograms based on spectral convolutional neural network[J]. Acta Optica Sinica, 40, 0509001(2020).
[67] Yang W J, Yuste R. Holographic imaging and stimulation of neural circuits[M]. //Yawo H, Kandori H, Koizumi A, et al. Optogenetics. Advances in experimental medicine and biology, 1293, 613-319(2021).
[68] Forli A, Vecchia D, Binini N et al. Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo[J]. Cell Reports, 22, 3087-3098(2018).
[69] Marshel J H, Kim Y S, Machado T A et al. Cortical layer-specific critical dynamics triggering perception[J]. Science (New York, N.Y.), 365, eaaw5202(2019).
[70] Carrillo-Reid L, Han S T, Yang W J et al. Controlling visually guided behavior by holographic recalling of cortical ensembles[J]. Cell, 178, 447-457(2019).
[71] Chen I W, Ronzitti E, Lee B R et al. In vivo submillisecond two-photon optogenetics with temporally focused patterned light[J]. The Journal of Neuroscience, 39, 3484-3497(2019).
[72] Accanto N, Chen I W, Ronzitti E et al. Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation[J]. Scientific Reports, 9, 7603(2019).
[73] Mardinly A R, Oldenburg I A, Pégard N C et al. Precise multimodal optical control of neural ensemble activity[J]. Nature Neuroscience, 21, 881-893(2018).
[74] Sofroniew N J, Flickinger D, King J et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging[J]. eLife, 5, e14472(2016).
[75] Tsai P S, Mateo C, Field J J et al. Ultra-large field-of-view two-photon microscopy[J]. Optics Express, 23, 13833-13847(2015).
[76] Stirman J N, Smith I T, Kudenov M W et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain[J]. Nature Biotechnology, 34, 857-862(2016).
[77] Yang S J, Allen W E, Kauvar I et al. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing[J]. Optics Express, 23, 32573-32581(2015).
[78] Sun S Y, Zhang G L, Cheng Z Y et al. Large-scale femtosecond holography for near simultaneous optogenetic neural modulation[J]. Optics Express, 27, 32228-32234(2019).