• Ultrafast Science
  • Vol. 4, Issue 1, 0064 (2024)
Yu Gong1,*, Zhonghua Yang2,3, Alem Teklu1, Ti Xie4..., Noah Kern1, Andrew F. May5, Michael McGuire5, Christian Brennan1, Er-Jia Guo6, Narayanan Kuthirummal1, John Cetin1, Qian Zhang1, Ming Hu2 and Cheng Gong4|Show fewer author(s)
Author Affiliations
  • 1Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424, USA.
  • 2Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA.
  • 3College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China.
  • 4Department of Electrical and Computer Engineering and Quantum Technology Center, University of Maryland, College Park, MD 20742, USA.
  • 5Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
  • 6Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • show less
    DOI: 10.34133/ultrafastscience.0064 Cite this Article
    Yu Gong, Zhonghua Yang, Alem Teklu, Ti Xie, Noah Kern, Andrew F. May, Michael McGuire, Christian Brennan, Er-Jia Guo, Narayanan Kuthirummal, John Cetin, Qian Zhang, Ming Hu, Cheng Gong. Efficient Optical Control of Magnon Dynamics in van der Waals Ferromagnets[J]. Ultrafast Science, 2024, 4(1): 0064 Copy Citation Text show less
    References

    [1] Rezende S. Spins travel far in an antiferromagnet. Nature. 2018;561(7722):181–182.

    [2] Daniels M, Cheng R, Yu W, Xiao J, Xiao D. Nonabelian magnonics in antiferromagnets. Phys Rev B. 2018;98(13): Article 134450.

    [3] Gündoğan M, Ledingham PM, Kutluer K, Mazzera M, de Riedmatten H. Solid state spin-wave quantum memory for time-bin qubits. Phys Rev Lett. 2015;114(23): Article 230501.

    [4] Wagner K, Kákay A, Schultheiss K, Henschke A, Sebastian T, Schultheiss H. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nat Nanotechnol. 2016;11(5):432–436.

    [5] Jamali M, Kwon JH, Seo SM, Lee KJ, Yang H. Spin wave nonreciprocity for logic device applications. Sci Rep. 2013;3:3160.

    [6] Klingler S, Pirro P, Brächer T, Leven B, Hillebrands B, Chumak AV. Spin-wave logic devices based on isotropic forward volume magnetostatic waves. Appl Phys Lett. 2015;106(21): Article 212406.

    [7] Buijnsters FJ, Ferreiros Y, Fasolino A, Katsnelson MI. Chirality-dependent transmission of spin waves through domain walls. Phys Rev Lett. 2016;116(14): Article 147204.

    [8] Kiseki K, Yakata S, Kimura T. Efficient excitation and detection of standing spin wave in Permalloy film: Demonstration of spin wave resonator. Appl Phys Lett. 2012;101(21): Article 212404.

    [9] Yamamoto R, Morisaki H, Sakata O, Shimotani H, Yuan H, Iwasa Y, Kimura T, Wakabayashi Y. Field dependence of the structure of the electric double layer at an ionic liquid/Au interface. Appl Phys Lett. 2012;101(5): Article 053122.

    [10] Anderson IA, Gisby TA, McKay TG, O’Brien BM, Calius EP. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys. 2012;112(4): Article 041101.

    [11] Manuilov SA, Fors R, Khartsev SI, Grishin AM. Submicron Y3Fe5O12 film magnetostatic wave band pass filters. J Appl Phys. 2009;105(3): Article 033917.

    [12] Vogt K, Fradin FY, Pearson JE, Sebastian T, Bader SD, Hillebrands B, Hoffmann A, Schultheiss H. Realization of a spin-wave multiplexer. Nat Commun. 2014;5:3727.

    [13] Hertel R, Wulfhekel W, Kirschner J. Domain-wall induced phase shifts in spin waves. Phys Rev Lett. 2004;93(25): Article 257202.

    [14] Dobrovolskiy OV, Sachser R, Bunyaev SA, Navas D, Bevz VM, Zelent M, Śmigaj W, Rychły J, Krawczyk M, Vovk RV, et al. Spin-wave phase inverter upon a single nanodefect. ACS Appl Mater Interfaces. 2019;11(19):17654–17662.

    [15] Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B, Chumak AV. Reconfigurable nanoscale spin-wave directional coupler. Sci Adv. 2018;4(1): Article e1701517.

    [16] Chumak AV, Vasyuchka VI, Serga AA, Kostylev MP, Tiberkevich VS, Hillebrands B. Storage-recovery phenomenon in magnonic crystal. Phys Rev Lett. 2012;108(25): Article 257207.

    [17] Kruglyak V, Demokritov S, Grundler D. Magnonics. J Phys D Appl Phys. 2010;43:260301.

    [18] Locatelli N, Cros V, Grollier J. Spin-torque building blocks. Nat Mater. 2014;13(1):11–20.

    [19] Talmelli G, Devolder T, Träger N, Förster J, Wintz S, Weigand M, Stoll H, Heyns M, Schütz G, Radu I, et al. Reconfigurable submicrometer spin-wave majority gate with electrical transducers. Sci Adv. 2020;6(51): Article eabb4042.

    [20] Krawczyk M, Grundler D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J Phys Condens Matter. 2014;26(12): Article 123202.

    [21] Khramova AE, Kobecki M, Akimov IA, Savochkin IV, Kozhaev MA, Shaposhnikov AN, Berzhansky VN, Zvezdin AK, Bayer M, Belotelov VI. Accumulation and control of spin waves in magnonic dielectric microresonators by a comb of ultrashort laser pulses. Sci Rep. 2022;12(1):7369.

    [22] Liang J, Liang S, Xie T, May AF, Ersevim T, Wang Q, Ahn H, Lee C, Zhang X, Wang J-P, et al. Facile integration of giant exchange bias in Fe5GeTe2/oxide heterostructures by atomic layer deposition. Phys. Rev. Mater. 2023;7: Article 014008.

    [23] Geim A, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419–425.

    [24] Wang Q, Kalantar-Zadeh K, Kis A, Coleman J, Strano M. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699–712.

    [25] Butler S, Hollen S, Cao L, Cui Y, Gupta J, Gutierrez H, Heinz T, Hong S, Huang J, Ismach A, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 2013;7(4):2898–2926.

    [26] Hung N, Nugraha A, Saito R. Two-dimensional InSe as a potential thermoelectric material. Appl Phys Lett. 2017;111(9): Article 092107.

    [27] Bae YJ, Wang J, Scheie A, Xu J, Chica DG, Diederich GM, Cenker J, Ziebel ME, Bai Y, Ren H, et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature. 2022;609(7926):282–286.

    [28] Liang S, Liang J, Kotsakidis JC, Arachchige HS, Mandrus D, Friedman AL, Gong C. New coercivities and Curie temperatures emerged in van der Waals homostructures of Fe3GeTe2. Phys Rev Mater. 2023;7:L061001.

    [29] Liang S, Xie T, Blumenschein NA, Zhou T, Ersevim T, Song Z, Liang J, Susner MA, Conner BS, Gong S-J, et al. Small-voltage multiferroic control of two-dimensional magnetic insulators. Nat Electron. 2023;6:199–205.

    [30] May AF, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, McGuire MA. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe. ACS Nano. 2019;13(4):4436–4442.

    [31] Stahl J, Shlaen E, Johrendt D. The van der Waals ferromagnets Fe5-δ GeTe2 and Fe5-δ-xNixGeTe2—Crystal structure, stacking faults, and magnetic properties. Z Anorg Allg Chem. 2018;644(24):1923–1929.

    [32] Ohta T, Sakai K, Taniguchi H, Driesen B, Okada Y, Kobayashi K, Niimi Y. Enhancement of coercive field in atomically-thin quenched Fe5GeTe2. Appl Phys Express. 2020;13(4):043005.

    [33] May AF, Du M-H, Cooper VR, McGuire MA. Tuning magnetic order in the van derWaals metal Fe5GeTe2 by cobalt substitution. Phys Rev Mater. 2020;4: Article 074008.

    [34] Jin C, Ma E, Karni O, Regan E, Wang F, Heinz T. Ultrafast dynamics in van der Waals heterostructures. Nat Nanotechnol. 2018;13(11):994–1003.

    [35] Guo J, Zhang C, Liang W, Zhang X, Luo S. Enhanced coherent phonon excitation in Fe3GeTe2 via resonance Raman effect. Phys Rev B. 2021;103(2): Article 024302.

    [36] Ren YH, Wu C, Gong Y, Pettiford C, Sun NX. Ultrafast optical study of spin wave resonance and relaxation in a CoFe/PtMn/CoFe trilayer film. J Appl Phys. 2009;105(7):07D304.

    [37] Zhang XX, Li L, Weber D, Goldberger J, Mak KF, Shan J. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat Mater. 2020;19(8):838–842.

    [38] Koopmans B, Malinowski G, Longa F, Steiauf D, Faehnle M, Roth T, Cinchetti M, Aeschlimann M. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat Mater. 2010;9(3):259–265.

    [39] Yuan H, Gao H, Gong Y, Lu J, Zhang X, Zhao J, Ren Y, Zhao H, Chen L. Photoinduced spin precession in Fe/GaAs(001) heterostructure with low power excitation. Appl Phys Express. 2013;6(7): Article 073008.

    [40] Kittel C. On the theory of ferromagnetic resonance absorption. Phys Rev. 1948;73:155.

    [41] Kaiser S, Hunt C, Nicoletti D, Hu W, Gierz I, Liu H, Le Tacon M, Loew T, Haug D, Keimer B, et al. Optically induced coherent transport far above T-c in underdoped YBa2Cu3O6+delta. Phys Rev B. 2014;89(18): Article 184516.

    [42] Hu W, Kaiser S, Nicoletti D, Hunt C, Gierz I, Hoffmann M, Le Tacon M, Loew T, Keimer B, Cavalleri A. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat Mater. 2014;13(7):705–711.

    [43] Mankowsky R, Subedi A, Forst M, Mariager S, Chollet M, Lemke H, Robinson J, Glownia J, Minitti M, Frano A, et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature. 2014;516(7529):71–73.

    [44] Biswas D, Jones A, Majchrzak P, Choi B, Lee T, Volckaert K, Feng J, Markovic I, Andreatta F, Kang C, et al. Ultrafast triggering of insulator-metal transition in two-dimensional VSe2. Nano Lett. 2021;21(5):1968–1975.

    [45] Afanasiev D, Hortensius JR, Ivanov BA, Sasani A, Bousquet E, Blanter YM, Mikhaylovskiy RV, Kimel AV, Caviglia AD. Ultrafast control of magnetic interactions via light-driven phonons. Nat Mater. 2021;20(5):607–611.

    [46] Urru AC, Dal A. Lattice dynamics effects on the magnetocrystalline anisotropy energy: Application to MnBi. Phys Rev B. 2020;102(11): Article 115126.

    [47] Cuadrado R, Evans RFL, Shoji T, Yano M, Kato A, Ito M, Hrkac G, Schrefl T, Chantrell RW. First principles and atomistic calculation of the magnetic anisotropy of Y2Fe14B. J Appl Phys. 2021;130(2): Article 023901.

    [48] Stanciu CD, Kimel AV, Hansteen F, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo : The role of angular momentum compensation. Phys Rev B. 2006;73(22):220402(R).

    [49] May AFB, McGuire CA, Michael A. Physical properties and thermal stability of Fe5-xGeTe2 single crystals. Phys Rev Mater. 2019;3(10): Article 104401.

    [50] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50.

    [51] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169–11186.

    [52] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758–1775.

    [53] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18): 3865–3868.

    [54] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192.

    Yu Gong, Zhonghua Yang, Alem Teklu, Ti Xie, Noah Kern, Andrew F. May, Michael McGuire, Christian Brennan, Er-Jia Guo, Narayanan Kuthirummal, John Cetin, Qian Zhang, Ming Hu, Cheng Gong. Efficient Optical Control of Magnon Dynamics in van der Waals Ferromagnets[J]. Ultrafast Science, 2024, 4(1): 0064
    Download Citation