[1] Y. Zhao, D.P. Adiyeri Saseendran, C. Huang, C.A. Triana, W.R. Markset al., Oxygen evolution/reduction reaction catalysts: From in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 123, 6257–6358 (2023).
[2] Z. Liu, Z. Kong, S. Cui, L. Liu, F. Wang et al., Electrocatalytic mechanism of defect in spinels for water and organics oxidation. Small (2023).
[3] J. Li, W. Yin, J. Pan, Y. Zhang, F. Wang et al., External field assisted hydrogen evolution reaction. Nano Res. (2023).
[4] Z. Yin, L. Xie, W. Yin, T. Zhi, K. Chen et al., Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chin. Chem. Lett. (2023).
[5] M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2(11), (2017).
[6] M. Shetty, A. Walton, S.R. Gathmann, M.A. Ardagh, J. Gopeesingh et al., The catalytic mechanics of dynamic surfaces: stimulating methods for promoting catalytic resonance. ACS Catal. 10(21), 12666–12695 (2020).
[7] Y. Huang, W. Quan, H. Yao, R. Yang, Z. Hong et al., Recent advances in surface reconstruction toward self-adaptive electrocatalysis: a review. Inorganic Chem. Frontiers 10(2), 352–369 (2023).
[8] T. Liang, A. Wang, D. Ma, Z. Mao, J. Wang et al., Low-dimensional transition metal sulfide-based electrocatalysts for water electrolysis: overview and perspectives. Nanoscale 14(48), 17841–17861 (2022).
[9] C. Huang, X. Chen, Z. Xue, T. Wang, Effect of structure: a new insight into nanoparticle assemblies from inanimate to animate. Sci. Adv. 6(20), eaba1321 (2020).
[10] W. Zhao, B. Jin, L. Wang, C. Ding, M. Jiang et al., Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chin. Chem. Lett. 33(1), 557–561 (2022).
[11] R. Cepitis, N. Kongi, J. Rossmeisl, V. Ivaništšev, Surface curvature effect on dual-atom site oxygen electrocatalysis. ACS Energy Lett. 8(3), 1330–1335 (2023).
[12] G. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang et al., Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 12(1), 6335 (2021).
[13] S. Zhai, H. Xie, P. Cui, D. Guan, J. Wang et al., A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7(9), 866–875 (2022).
[14] X. Zhou, Z. Jin, J. Zhang, K. Hu, S. Liu et al., Curvature effects on the bifunctional oxygen catalytic performance of single atom metal-N-C. Nanoscale 15(5), 2276–2284 (2023).
[15] W. Zhao, C. Cui, Y. Xu, Q. Liu, Y. Zhang et al., Triggering pt active sites in basal plane of van der Waals PtTe2 materials by amorphization engineering for hydrogen evolution. Adv. Mater. 35(29), (2023).
[16] W. Yin, L. Yuan, H. Huang, Y. Cai, J. Pan et al., Strategies to accelerate bubble detachment for efficient hydrogen evolution. Chin. Chem. Lett. (2023).
[17] Z. Huang, Z. He, Y. Zhu, H. Wu, A general theory for the bending of multilayer van der waals materials. J. Mech. Phys. Solids 171, 105144 (2023).
[18] G. Cao, H. Gao, Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater. Sci. 103, 558–595 (2019).
[19] C. Huang, X. Chen, Z. Xue, T. Wang, Nanoassembled interface for dynamics tailoring. Acc. Chem. Res. 54(1), 35–45 (2021).
[20] Z. Lai, Y. Chen, C. Tan, X. Zhang, H. Zhang, Self-assembly of two-dimensional nanosheets into one-dimensional nanostructures. Chem 1(1), 59–77 (2016).
[21] Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9(1), 190 (2020).
[22] Z. Dai, Y. Hou, D.A. Sanchez, G. Wang, C.J. Brennan et al., Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys. Rev. Lett. 121(26), 266101 (2018).
[23] P. Gentile, M. Cuoco, O.M. Volkov, Z.-J. Ying, I.J. Vera-Marun et al., Electronic materials with nanoscale curved geometries. Nat. Electron. 5(9), 551–563 (2022).
[24] Q.-M. Liang, X. Wang, X.-W. Wan, L.-X. Lin, B.-J. Geng et al., Opportunities and challenges of strain engineering for advanced electrocatalyst design. Nano Res. (2023).
[25] M. Wei, L. Yang, L. Wang, T. Liu, C. Liu et al., In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media. Chem. Phys. Lett. 681, 90–94 (2017).
[26] J. Wang, Z. Li, N. Hu, L. Liu, C. Huang et al., From lamellar to hierarchical: overcoming the diffusion barriers of sulfide-intercalated layered double hydroxides for highly efficient water treatment. J. Mater. Chem. A 5(43), 22506–22511 (2017).
[27] F.L. Deepak, R. Esparza, B. Borges, X. López-Lozano, M. Jose-Yacaman, Rippled and helical MoS2 nanowire catalysts: an aberration corrected stem study. Catal. Lett. 141(4), 518–524 (2011).
[28] Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito et al., Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 26(47), 8023–8028 (2014).
[29] X. Hong, J. Liu, B. Zheng, X. Huang, X. Zhang et al., A universal method for preparation of noble metal nanoparticle-decorated transition metal dichalcogenide nanobelts. Adv. Mater. 26(36), 6250–6254 (2014).
[30] F. Wang, J. Li, F. Wang, T.A. Shifa, Z. Cheng et al., Enhanced electrochemical H2 evolution by few-layered metallic WS2(1–x)Se2xnanoribbons. Adv. Funct. Mater. 25(38), 6077–6083 (2015).
[31] L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang et al., Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 9(6), 6478–6483 (2015).
[32] P. Fan, Y. He, J. Pan, N. Sun, Q. Zhang et al., Recent advances in photothermal effects for hydrogen evolution. Chinese Chem. Lett. (2023).
[33] C. Huang, Z. Guo, X. Zheng, X. Chen, Z. Xue et al., Deformable metal-organic framework nanosheets for heterogeneous catalytic reactions. J. Am. Chem. Soc. 142(20), 9408–9414 (2020).
[34] S. Zhang, W. Wang, F. Hu, Y. Mi, S. Wang et al., 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 ma cm-2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12(1), 140 (2020).
[35] R. Ghosh, M. Singh, L.W. Chang, H.I. Lin, Y.S. Chen et al., Enhancing the photoelectrochemical hydrogen evolution reaction through nanoscrolling of two-dimensional material heterojunctions. ACS Nano 16(4), 5743–5751 (2022).
[36] L. Xie, L. Wang, W. Zhao, S. Liu, W. Huang et al., WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 12(1), 5070 (2021).
[37] Y. Wang, Z. Bao, M. Shi, Z. Liang, R. Cao et al., The role of surface curvature in electrocatalysts. Chemistry 28(1), e202102915 (2022).
[38] X. Xu, T. Liang, D. Kong, B. Wang, L. Zhi, Strain engineering of two-dimensional materials for advanced electrocatalysts. MT. Nano 14, 100111 (2021).
[39] W. Yao, C. Hu, Y. Zhang, H. Li, F. Wang et al., Hierarchically ordered porous carbon with atomically dispersed cobalt for oxidative esterification of furfural. Ind. Chem. Mater. 1(1), 106–116 (2023).
[40] C. Chang, L. Wang, L. Xie, W. Zhao, S. Liu et al., Amorphous molybdenum sulfide and its Mo-S motifs: structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 15(9), 8613–8635 (2022).
[41] Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2d transition metal dichalcogenides for electrocatalysis. Energ. Environ. Sci. 13(6), 1593–1616 (2020).
[42] X. Wang, Y. Zhang, J. Wu, Z. Zhang, Q. Liao et al., Single-atom engineering to ignite 2d transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 122(1), 1273–1348 (2021).
[43] Z. Liu, Y. Du, R. Yu, M. Zheng, R. Hu et al., Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem. Int. Ed. 62(3), e202212653 (2023).
[44] Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11(1), 1151 (2020).
[45] S. Li, B. Xu, M. Lu, M. Sun, H. Yang et al., Tensile-strained palladium nanosheets for synthetic catalytic therapy and phototherapy. Adv. Mater. 34(32), e2202609 (2022).
[46] S. Wang, L. Wang, L. Xie, W. Zhao, X. Liu et al., Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 15(6), 4996–5003 (2022).
[47] C. Sun, M. Liu, L. Wang, L. Xie, W. Zhao et al., Revisiting lithium-storage mechanisms of molybdenum disulfide. Chinese Chem. Lett. 33(4), 1779–1797 (2022).
[48] Y. Chen, W. Deng, X. Chen, Y. Wu, J. Shi et al., Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Res. 14(7), 2314–2320 (2020).
[49] M. Liu, H. Li, S. Liu, L. Wang, L. Xie et al., Tailoring activation sites of metastable distorted 1T′-phase MoS2 by ni doping for enhanced hydrogen evolution. Nano Res. 15(7), 5946–5952 (2022).
[50] L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 405, 127028 (2021).
[51] C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu et al., Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 164, 1–9 (2015).
[52] L. Wang, X. Duan, G. Wang, C. Liu, S. Luo et al., Omnidirectional enhancement of photocatalytic hydrogen evolution over hierarchical “cauline leaf” nanoarchitectures. Appl. Catal. B Environ. 186, 88–96 (2016).
[53] X. Liu, Y. Hou, M. Tang, L. Wang, Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution. Chinese Chem. Lett. 34(3), 107489 (2023).
[54] S. Li, Z. Zhuang, L. Xia, J. Zhu, Z. Liu et al., Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 66(1), 160–168 (2022).
[55] Z. Zhuang, Y. Li, J. Huang, Z. Li, K. Zhao et al., Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 64(9), 617–624 (2019).
[56] L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020).
[57] P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao et al., Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309(5741), 1700–1704 (2005).
[58] Y. Fu, Y. Shan, G. Zhou, L. Long, L. Wang et al., Electric strain in dual metal janus nanosheets induces structural phase transition for efficient hydrogen evolution. Joule 3(12), 2955–2967 (2019).
[59] L. Wang, G. Zhou, H. Luo, Q. Zhang, J. Wang et al., Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B Environ. 256, 117802 (2019).
[60] Z. Xia, S. Guo, Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 48(12), 3265–3278 (2019).
[61] Y. Yang, M. Luo, W. Zhang, Y. Sun, X. Chen et al., Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem 4(9), 2054–2083 (2018).
[62] W. Yin, Y. Cai, L. Xie, H. Huang, E. Zhu et al., Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res. 16(4), 4381–4398 (2022).
[63] Z. Huang, G. Xian, X. Xiao, X. Han, G. Qian et al., Tuning multiple landau quantization in transition-metal dichalcogenide with strain. Nano Lett. 23(8), 3274–3281 (2023).
[64] Y. Chang, J. Liu, H. Liu, Y.W. Zhang, J. Gao et al., Robust sandwiched B/TM/B structures by metal intercalating into bilayer borophene leading to excellent hydrogen evolution reaction. Adv. Energy Mater. 13(29), 2301331 (2023).
[65] Y. Chang, P. Zhai, J. Hou, J. Zhao, J. Gao, Excellent HER and OER catalyzing performance of Se-vacancies in defects-engineered PtSe2: from simulation to experiment. Adv. Energy Mater. 12(1), 2102359 (2023).
[66] S. Zhao, C. Yang, Z. Zhu, X. Yao, W. Li, Curvature-controlled band alignment transition in 1D van der Waals heterostructures. NPJ Comput. Mater. 9(1), 92 (2023).
[67] H. Zhu, S. Sun, J. Hao, Z. Zhuang, S. Zhang et al., A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 16(2), 619–628 (2023).
[68] D.Y. Hwang, K.H. Choi, D.H. Suh, A vacancy-driven phase transition in MoX2 (X: S, Se and Te) nanoscrolls. Nanoscale 10(17), 7918–7926 (2018).
[69] D.Y. Hwang, K.H. Choi, J.E. Park, D.H. Suh, Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS2 nano-scrolls. Phys. Chem. Chem. Phys. 19(28), 18356–18365 (2017).
[70] D.Y. Hwang, D.H. Suh, Evolution of a high local strain in rolling up MoS2 sheets decorated with Ag and Au nanoparticles for surface-enhanced Raman scattering. Nanotechnology 28(2), 025603 (2017).
[71] J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng et al., Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Appl. Catal. B Environ. 241, 89–94 (2019).
[72] Z. Jiang, W. Zhou, C. Hu, X. Luo, W. Zeng et al., Interlayer-confined NiFe dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting. Adv. Mater. (2023).
[73] Y. Li, Y. Hua, N. Sun, S. Liu, H. Li et al., Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. (2023).
[74] M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li et al., Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 30(10), 1705515 (2018).
[75] M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., PdMo bimetallene for oxygen reduction catalysis. Nature 574(7776), 81–85 (2019).
[76] B. Zhao, Z. Wan, Y. Liu, J. Xu, X. Yang et al., High-order superlattices by rolling up van der waals heterostructures. Nature 591(7850), 385–390 (2021).
[77] Z. Jiang, W. Zhou, A. Hong, M. Guo, X. Luo et al., MoS2 moiré superlattice for hydrogen evolution reaction. ACS Energy Lett. 4(12), 2830–2835 (2019).
[78] W. Zhang, H. Hao, Y. Lee, Y. Zhao, L. Tong et al., One-interlayer-twisted multilayer MoS2 moiré superlattices. Adv. Funct. Mater. 32(19), 2111529 (2022).
[79] Q. Deng, R. Huang, L.H. Shao, A.V. Mumyatov, P.A. Troshin et al., Atomic understanding of the strain-induced electrocatalysis from DFT calculation: Progress and perspective. Phys. Chem. Chem. Phys. 25, 12565–12586 (2023).
[80] H. Guo, L. Li, Y. Chen, W. Zhang, C. Shang et al., Precise strain tuning boosts electrocatalytic hydrogen generation. Adv. Mater. (2023).
[81] R.P. Jansonius, P.A. Schauer, D.J. Dvorak, B.P. MacLeod, D.K. Fork et al., Strain influences the hydrogen evolution activity and absorption capacity of palladium. Angew. Chem. Int. Ed. 59(29), 12192–12198 (2020).
[82] C. Sun, L. Wang, W. Zhao, L. Xie, J. Wang et al., Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 32(38), 2206163 (2022).
[83] L. Wang, X. Liu, Q. Zhang, G. Zhou, Y. Pei et al., Quasi-one-dimensional mo chains for efficient hydrogen evolution reaction. Nano Energy 61, 194–200 (2019).
[84] Z. Luo, B. Peng, J. Zeng, Z. Yu, Y. Zhao et al., Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat. Commun. 12(1), 1928 (2021).
[85] T. Zhang, Y. Liu, J. Yu, Q. Ye, L. Yang et al., Biaxially strained MoS2 nanoshells with controllable layers boost alkaline hydrogen evolution. Adv. Mater. 34(27), e2202195 (2022).
[86] H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang et al., Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 30(26), e1707301 (2018).
[87] L. Ji, H. Cao, W. Xing, S. Liu, Q. Deng et al., Facilitating electrocatalytic hydrogen evolution via multifunctional tungsten@tungsten disulfide core–shell nanospheres. J. Mater. Chem. A 9(14), 9272–9280 (2021).
[88] X. Sun, C. Chen, C. Xiong, C. Zhang, X. Zheng et al., Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection. Nano Res. 16(1), 917–924 (2022).
[89] J. Chen, Y. Tang, S. Wang, L. Xie, C. Chang et al., Ingeniously designed Ni-Mo-S/ZnIn2S4 composite for multi-photocatalytic reaction systems. Chinese Chem. Lett. 33(3), 1468–1474 (2022).
[90] Y. Li, B. Yu, H. Li, B. Liu, X. Yu et al., Activation of hydrogen peroxide by molybdenum disulfide as fenton-like catalyst and cocatalyst: Phase-dependent catalytic performance and degradation mechanism. Chinese Chem. Lett. 34(5), 107874 (2023).
[91] Z. Zhuang, F. Wang, R. Naidu, Z. Chen, Biosynthesis of Pd–Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power. Sources 291, 132–137 (2015).
[92] H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng et al., MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 13(7), 3426–3433 (2013).
[93] L. Wang, X. Liu, J. Luo, X. Duan, J. Crittenden et al., Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 56(26), 7610–7614 (2017).
[94] M. Yang, K. Wu, S. Sun, J. Duan, X. Liu et al., Unprecedented relay catalysis of curved Fe1–N4 single-atom site for remarkably efficient 1O2 generation. ACS Catal. 13(1), 681–691 (2022).
[95] C. Jin, S. Fan, Z. Zhuang, Y. Zhou, Single-atom nanozymes: From bench to bedside. Nano Res. 16(2), 1992–2002 (2023).
[96] Z. Zhuang, Y. Li, Y. Li, J. Huang, B. Wei et al., Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 14(2), 1016–1028 (2021).
[97] Z. Zhuang, L. Xia, J. Huang, P. Zhu, Y. Li et al., Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem. Int. Ed. 62(5), e202212335 (2023).
[98] F. Zhuo, J. Wu, B. Li, M. Li, C.L. Tan et al., Modifying the power and performance of 2-dimensional MoS2 field effect transistors. Research 6, 0057 (2023).
[99] G. Zhou, Y. Shan, L. Wang, Y. Hu, J. Guo et al., Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 10(1), 399 (2019).
[100] Z. Luo, X. Song, X. Liu, X. Lu, Y. Yao et al., Revealing the key role of molecular packing on interface spin polarization at two-dimensional limit in spintronic devices. Sci. Adv. 9(14), eade9126 (2023).
[101] K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen et al., Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 12(1), 1687 (2021).
[102] D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4(6), 512–518 (2019).
[103] M. Pu, Y. Guo, W. Guo, Wrinkle facilitated hydrogen evolution reaction of vacancy-defected transition metal dichalcogenide monolayers. Nanoscale 13(48), 20576–20582 (2021).
[104] C. Martella, C. Mennucci, A. Lamperti, E. Cappelluti, F.B. de Mongeot et al., Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv. Mater. 30(9), 1705615 (2018).
[105] L. Bu, J. Ding, S. Guo, X. Zhang, D. Su et al., A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 27(44), 7204–7212 (2015).
[106] D. Rhee, Y.L. Lee, T.W. Odom, Area-specific, hierarchical nanowrinkling of two-dimensional materials. ACS Nano 17(7), 6781–6788 (2023).
[107] A.B. Loginov, P.V. Fedotov, S.N. Bokova-Sirosh, I.V. Sapkov, D.N. Chmelenin et al., Synthesis, structural, and photoluminescence properties of MoS2 nanowall films. Phys. Status. Solidi. (b) 2200481 (2023).
[108] L. Bu, S. Guo, X. Zhang, X. Shen, D. Su et al., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7(1), 11850 (2016).
[109] J. Lai, B. Huang, Y. Tang, F. Lin, P. Zhou et al., Barrier-free interface electron transfer on PtFe-Fe2C janus-like nanoparticles boosts oxygen catalysis. Chem 4(5), 1153–1166 (2018).
[110] D. Rhuy, Y. Lee, J.Y. Kim, C. Kim, Y. Kwon et al., Ultraefficient electrocatalytic hydrogen evolution from strain-engineered, multilayer MoS2. Nano Lett. 22(14), 5742–5750 (2022).
[111] R. Ghosh, B. Papnai, Y.S. Chen, K. Yadav, R. Sankar et al., Exciton manipulation for enhancing photo-electrochemical hydrogen evolution reaction in wrinkled 2D heterostructures. Adv. Mater. 35(16), 2210746 (2023).
[112] K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang et al., Component-controllable WS2(1–x) Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 8(8), 8468–8476 (2014).
[113] Z. Liu, Y. Du, P. Zhang, Z. Zhuang, D. Wang, Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 4(10), 3161–3194 (2021).
[114] Z. Zhuang, Y. Li, R. Yu, L. Xia, J. Yang et al., Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 5(4), 300–310 (2022).
[115] J. Zhou, F. Wang, H. Wang, S. Hu, W. Zhou et al., Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic her in alkaline and acid media. Nano Res. 16(2), 2085–2093 (2022).
[116] S. Jiao, M. Kong, Z. Hu, S. Zhou, X. Xu et al., Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution. Small 18(16), e2105129 (2022).
[117] W. Han, J. Ning, Y. Long, J. Qiu, W. Jiang et al., Unlocking the ultrahigh-current-density hydrogen evolution on 2H-MoS2 via simultaneous structural control across seven orders of magnitude. Adv. Energy Mater. 13(16), 2300145 (2023).
[118] W. Cui, B. Geng, X. Chu, J. He, L. Jia et al., Coupling Fe and Mo single atoms on hierarchical N-doped carbon nanotubes enhances electrochemical nitrogen reduction reaction performance. Nano Res. 16, 5743–5749 (2022).
[119] S. Hou, A. Zhang, Q. Zhou, Y. Wen, S. Zhang et al., Designing heterostructured FeP–CoP for oxygen evolution reaction: Interface engineering to enhance electrocatalytic performance. Nano Res. (2023).
[120] C. Meng, Y. Gao, Y. Zhou, K. Sun, Y. Wang et al., P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution. Nano Res. 16, 6228–6236 (2022).
[121] G. Wang, Z. Dai, J. Xiao, S. Feng, C. Weng et al., Bending of multilayer van der waals materials. Phys. Rev. Lett. 123(11), 116101 (2019).
[122] K. Chen, J. Pan, W. Yin, C. Ma, L. Wang, Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides. Chinese Chem. Lett. 108226 (2023).
[123] X. Qiao, X. Yin, L. Wen, X. Chen, J. Li et al., Variable nanosheets for highly efficient oxygen evolution reaction. Chem 8(12), 3241–3251 (2022).
[124] J. Yang, Z. Wang, C.X. Huang, Y. Zhang, Q. Zhang et al., Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60(42), 22722–22728 (2021).
[125] D. Chen, M. Luo, S. Ning, J. Lan, W. Peng et al., Single-atom gold isolated onto nanoporous MoSe2 for boosting electrochemical nitrogen reduction. Small 18(4), e2104043 (2022).
[126] F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional mxene/c aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), (2023).
[127] B. Lin, Y. Zhang, H. Zhang, H. Wu, J. Shao et al., Centimeter-scale two-dimensional metallenes for high-efficiency electrocatalysis and sensing. ACS Mater. Lett. 5(2), 397–405 (2023).
[128] H. Guo, X. Wang, Q. Qian, F. Wang, X. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9), 2653–2659 (2009).
[129] P. Zhai, C. Wang, Y. Zhao, Y. Zhang, J. Gao et al., Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Comm. 14(1), 1873 (2023).
[130] Y. Zhang, Y. Zhao, Y. Bai, Gao J., J. Zhao et al., Universal zigzag edge reconstruction of an α-phase puckered monolayer and its resulting robust spatial charge separation. Nano Lett. 21(19), 8095–8102 (2021).